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A kinetic equation is derived to describe the fluctuational overcoming of an activation barrier by drops 
nucleated in a supersaturated vapor on condensation nuclei that are soluble in the drops. It is shown that the 
activation energy in the case of heterogeneous condensation is the gradient of the heights of the potential hill 
and potential well of the work of drop formation, rather than the height of the potential hill of the work for 
the critical drop (as in the case of homogeneous condensation). It is found that the rate of heterogeneous 
formation of supercritical drops is steady. The subsequent growth of these drops is unconstrained. An 
incubation period is established for the steady-state growth. It is shown that the incubation period also 
determines the characteristic time scale for the development of the heterogeneous phase transformation 
throughout the metastable region of the vapor, where the degree of supersaturation is low. Estimates are made 
of characteristics of the process of condensation on soluble nuclei in the case when the substance of the nuclei 
is surface-inactive. 

The importance of understanding the kinetics of condensation on soluble nuclei was demonstrated in [1]. Being die 
final link between thermodynamics and experimentation, kinetics is of course needed for the information that it can give to 
thermodynamics. The present article is devoted to the kinetics of condensation on soluble nuclei — a subject which has not 
been examined previously in the literature. We will focus on the prethreshold region of metastabililty of the vapor. In this 
region, activation energy is already substantial but remains below the level at which heterogeneous phase transformation takes 
place. It is in this region that the kinetics of heterogeneous condensation is of the most interest, since a greater understanding 
of this subject may make it possible to externally control the development of the phase transformation over time and extract 
the maximum amount of information from experimental data on the molecular properties of the substance condensing from the 
vapor. 

The kinetic theory constructed below is general in the sense that it is based on fundamental thermodynamic 
characteristics of heterogeneous nucleation: the threshold value of the chemical potential of the vapor; the positions and half-
widths of the potential well and potential hill of the work of heterogeneous drop formation; activation energy. All of these 
characteristics were found in [1] for the case when the substance of the nucleus is surface-inactive. 

Principles of the Kinetics of Overcoming of the Activation Barr ie r by Near-Crit ical Drops . We will use the 
notation employed in [1]. Here v is the number of condensate molecules in a drop (condensed from the vapor phase); vn is 
the number of molecules or ions in the condensation nucleus; T is the temperature of the drop and the v a p o r - a s medium 
surrounding it; R is the radius of the drop; b„ and b are the chemical potentials of the condensate in the drop and the vapor, 
respectively, expressed in thermal energy units kT (k being the Boltzmann constant) and reckoned from the value corresponding 
to equilibrium of the vapor with the condensing liquid when their contact surface is planer; a is the dimensionless surface 
tension of the drop determined by Eq. (4) from [1]; a zero subscript characterizes values corresponding to the maximum 
chemical potential of the condensate; subscripts e and c characterize values for equilibrium and critical drops; F is the work 
of heterogeneous drop formation in the vapor on the condensation nucleus, expressed in thermal energy units kT; APC and Avc 

are the half-widths of the potential well and potential hill of the work F. 
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The chemical potential of the vapor b is conveniently represented as 

b = btr (1 - e ) . ( J ) 

([1], Eq. (16)), where b t r is the threshold chemical potential of the vapor. The parameter £, determining the value of b, 
satisfies the following estimate within the prethreshold region of metastability that we are interested in 

( 2 ) 

([1], expression (36)). 

To construct the kinetic equation controlling the fluctuational surmounting of the activation barrier by near-critical 
nuclei, we need to know their equilibrium distribution and the rate of change over time in the variable that describes them. 

Referred to a unit volume of the vapor, the equilibrium distribution of the drops with respect to the variable v will be 
designated as v^\v). For simplicity, we will assume that all of the condensation nuclei are identical. We will use n^ to 
represent the number of such nuclei per unit volume of the vapor. 

Since the work F e is negative and — in the prethreshold region of metastability of the vapor — has a high absolute 
value (i.e., compared to the thermal energy), nearly each of the nuclei captures the number of vapor molecules at which the 
resulting drop turns out to be at the bottom of the potential well of work F. As a result, we also obtain an equilibrium 
distribution of heterogeneously formed drops. 

Considering that the equilibrium distribution has the form of a Gibbs distribution, we find that 

n ( e ) 0 0 = (nn/irtAAve)exp [-(F - Fe)) (3) 

To check the correctness of the normalization factor in this distribution, we integrated over die near-equilibrium neighborhood 
\ v - p c \ < A^ c in which it is concentrated. Using the equation 

F = Fe+[(y-ve)lAve)2 {\v-ve\$*ve) (4) 

([1], Eq. (29)), we conclude that the integral is equal to r^ — as it should be. 
The idea expressed by Eqs. (3) and (4) — that heterogeneously formed stable-phase nuclei accumulate at the bottom 

of the potential well of nucleus formation work before their fluctuational surmounting of the activation barrier —- was used in 
[2] in a theory explaining the nucleation of drops on ions in metastable vapor. 

In the important (for kinetics) near-critical neighborhood | v — vc | 5 A^ c the following is valid 

F= Fc-[(y- vc)lAvcf (1 v - vc\ < Avc) (5) 

([1], Eq. (30)). Using (3) and allowing for (5), we obtain the following in this neighborhood (in which the equilibrium 
distribution gives a relatively small number of drops and is of purely formal significance): 

2 

TT * Ave Auc 

where, in accordance with definition (27) from [1], we put 

AF = Fc~Fe W 

the fact that F c and F c enter into (6) in the form of the difference F c - F e at once shows why a differential expression is 
sufficient in the heterogeneous theory, rather than the finite-difference relation 

dF/dv = b u - b (8) 

( [ 1 ] , Eq. (22)). In the present case, the work F is determined only to within the constant term. 
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Let us now find the time rate of change v in the variable v in a near-critical nucleus. We will use p and p p to represent 
the density of the number of molecules of vapor actually present and the same for a hypothetical vapor in which the temperature 
T is the same as in the real vapor but in which a drop with the number v of molecules of condensed liquid is critical. 
Assuming the real and hypothetical vapors to be ideal, we have 

P = Poo e * P Pv = p^exp (bv) (9) 

where p ^ is the density of the number of molecules of vapor in equilibrium with the condensing liquid in the case of a plane 
contact surface. 

Using the Knudsen formula 

v = w (i - p „ ; p ) (10) 

where 

W = navTpR2 . (II) 

Here, a is the condensation coefficient of the vapor molecules and v T is the mean thermal velocity of these molecules. The 
quantity R has an upper bound [3] due to the assumption made in connection with (10) that free-molecular mass exchange 
occurs between the drop and the vapor. However, as will be shown somewhat later, this restriction is so slight that it is almost 
always observed at the stage of supercritical-drop formation even despite the fact that it is in opposition to the restriction on 
the macroscopic nature of the nucleus 

v« > 1 12) 

([1], restriction (37)). 

Using (9) and (8) in (10), we find that 

v = w [l ~ exp (3/73^)1 (13) 

In the near-critical neighborhood | v — PC | 5 A*>c, in accordance with (5) and APC > > 1 ([1], the second of 
inequalities (40)) the condition | dFldv [ < < 1 is observed. In the same neighborhood, in accordance with the formula Rc 

= RQ[1 + (2e /3) I / 2 ] ([1], the second of formulas (21)) and the inequality c]/1 « 1 (which follows from ( 2 ) and ( 1 2 ) in the 
prethreshold region of metastability of the vapor) R = with a high degree of accuracy. Here , by virtue of the relation 

( [ 1 ] , Eq. (6)), Rfl is given by the expression 

Ri} = 3X(i; / l la)'' (15) 

in which X s (3vy /47r) 1 / 2 (v/ is the molecular volume of the condensing liquid). Using (5) and (11), we find from (13) that 

where 

It'O = ^TiavTpX:{url la) (17) 
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Kinetic Equa t ion for Overcoming of the Activation Barr ier by Near-Critical Drops, The kinetic equation 
controlling the fluctuational overcoming of the activation barrier by near-critical nuclei is the Fokker—Planck equation 
linearized in the neighborhood of a critical nucleus [4-6]. 

It has the form of the continuity equation 

dr» (A t ) = ~dvj (18) 

Here, t is time; n(i>, t) is the distribution of the nuclei with respect to the variable v describing them; j is the flux of nuclei. 
We have adopted the abbreviated notation 3 t = 3/flt and dy = dldv as the operators for differentiation with respect to t and 
v. We assume below that n(j>, t) — as the equilibrium distribution r^\v) — is referred to a unit volume of the vapor. 

In accordance with general principles of physical kinetics, we have 

7 = ( v + 03„)-AI (v, t) (19) 

The term with the operator dy describes the fluctuational growth of the nuclei. This growth blurs obscures the regular growth 
of an individual nucleus described by the term with v. The unknown coefficient /? in the term with the operator 3V is 
determined from the condition of vanishing of the flux of nuclei for their equilibrium distribution. 

Taking into account (6) and (16) in (19), we then obtain 

/ = -WQ[hv^2(v -vc)l{Avcf\n{vtt) (20) 

Inserting (20) into (18), we finally obtain 

brn{vt r) = t¥0 a:,fa„ - 2 0 - vc)I(Avc)2]n (v, r) (21) 

(the operator dv acts on all of the factors to the right of it). Kinetic equation (21) is written in the same form as in the classical 
theory of homogeneous condensation [5]. However, the parameters j> c , APC, and W 0 in this equation turn out to be quite 
different. 

The following natural (for the kinetics of phase transformations) boundary conditions [5, 6] are written for the 
distribution n(*>, t) 

n [v% t)in{c){v) - I {v - vc - Avc) 

n {v, t)!nKe)(v) ~ 0 (V = PC + Avc) ^ 

The equilibrium distribution n ( e ) (y ) under these conditions, determined by Eq. (6), also differs significantly from the distribution 
that would be obtained in the classical theory of homogeneous condensation. 

The above-noted inequality APC >> 1 justifies the fact that, in kinetic equation (21), we ignore the third and higher 
derivatives of n(i>, t) with respect to py i .e . , this inequality justifies use of the Fokker—Planck approximation in this equation. 
In fact, it shows that the change in v in an individual act of absorption or emission of a vapor molecule by a drop — equal to 
1 or - 1 — is small compared to the width Avc of the potential hill of the work F (which gives the scale of the change in the 
distribution n(p, t) with a change in p). 

Kinetic equation (21) is linearized in the neighborhood of the critical nucleus due to the application of quadratic 
approximation (5) for the work of formation of a near-critical nucleus. 

Steady State of Near-Cri t ica l Drops . Let us study the steady state of near-critical drops. We will denote this state, 
by the subscript s. 

In the steady state, the quantities are independent of t, while the flux j (by virtue of (18)) is also independent of \>. 
In accordance with (20), (22), and (6), we then have 

_ i ! LJ _ , v n fl — \ 1 i P v n L l - \ \clV ^ 
TjAve Avc 

Then inserting (23) into (20), we obtain 

„(*V) = _^_J ,. x p [, L , j f e x p ( _ ( — ] d v ' 
7T A ve A vc A Vc v ^ vc 

187 



(24) 

which determines a quantity important for kinetics — the steady-state rate of heterogeneous formation of supercritical drops 
which subsequently grow without constraints. The factor 1WQ/rApeApc in (24) is the heterogeneous analog of the "Zerdovich 
factor." 

As can be seen from (7), the work of heterogeneous drop formation is represented in the exponent in (24) as the 
difference F c - F e . This shows that the activation energy in the case of heterogeneous condensation is the gradient of the 
heights of the potential hill and potential well of the drop-formation work, rather than the height of the potential hill of the work 
for the critical drop (as in homogeneous condensation). 

Using results obtained in [7, 8] from study of an equation of the form (21) with boundary conditions (22), we might 
be able to analytically describe the process by which near-critical drops reach a steady state over time. In particular, we find 
that 

ts = (Avcf/2W0 ( 2 5 ) 

for the time t s of establishment of this state and, thus, the time of establishment of a steady rate of heterogeneous formation 
of supercritical drops. 

The time t s is observed experimentally. It is called the incubation period (or the lag time). When this period ends, 
supercritical nuclei of a stable phase begin to appear in the metastable phase with a regular frequency — in the amount per 
unit time in a unit volume of the metastable phase. 

With allowance for Avc = APC (which, in accordance with [1], is satisfied with a high degree of accuracy in the 
prethreshold region of metastability of the vapor), we find from (24-25) that the number of supercritical drops forming in the 
steady-state regime during the time t s in a unit volume of the vapor is a fraction ( l /x)exp( —AF) of the number n ]1 of 
condensation nuclei in the same volume. This fraction is very small in the prethreshold region — in which the activation 
energy AF is already substantial. It can be concluded that the time t s gives the scale of the characteristic time for the 
development of heterogeneous phase transformation in the prethreshold region of vapor metastability. The work F of drop 
formation is represented in Eq. (25) for the time t. by the width APC of its potential hill. 

If t s is small compared to the time during which the steady-state rate j< s ) changes significantly when the quantities b, 
r^, and T change over time (and within the volume occupied by the vapor and the gas), then the steady state of the near-critical 
drops will be sustained as a quasi-steady state — corresponding to instantaneous values of all of these quantities. 

Equation (25) justifies the above assumption that, in the course of overcoming the activation barrier, near-critical drops 
remain in a state of internal equilibrium. This assumption implies satisfaction of the inequality 

rr/ts < 1 ( 2 6 ) 

where ^ is the time of internal relaxation of a near-critical drop. Evaluating t r by means of t r ~ R 0

2 / D (where D is the 
coefficient of diffusion of molecules or ions in solution inside the drop), using (15), (25), and considering (17) and 

Ape = Avc = 21 (V2f (la)'* ( 2 7 ) 

( [ l ] ,Eq . (39)), we have 

t,/ts -avTD~lp\4avn-^ ( 2 8 ) 

It is evident from (28) that given the conditions characteristic of vapor condensation, inequality (26) is satisfied with a margin 
of error even larger than for strong inequality (12). 

Let us state the condition, adopted in (10), which corresponds to the assumption of free molecular mass exchange 
between the drop and the vapor. This condition reduces [3] to the form 
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R0 < I/® (29) 

where I is the mean free path of molecules of the vapor—gas medium surrounding the drop. Evaluating / by means of / ~ 
l/(p + p g)X 2 (where p g is the density of the number of molecules of the passive gas), considering (15), and writing (29) in 
the form of a limitation on *> n

1 / 3 , we obtain 

vXJ* < (2a) h [ 3 a ( p + p ^ A 3 ] - " . ( 3 0 ) 

Inequality (30) is the opposite of inequality (12). However, the quantity in the right side of (30) is very large — appreciably 

greater than 10 2 . Thus, restriction (30) is weak: It is compatible with limitation (12) with a large margin of error. 

The above-developed kinetic theory of heterogeneous condensation is universal and includes fundamental 

thermodynamic characteristics of heterogeneous nucleation. The restriction to cases involving nuclei composed of surface-

inactive substances is required only in Eq. (27), and this equation was used only to obtain approximate relation (28). 

Theory and Exper imen t . Equations (24) and (25) incorporate the main results of the above kinetic study. In the case 

of nuclei composed of surface-inactive substances, the quantities AF, A^ e , A// c, and W 0 in these formulas are expressed through 

the initial parameters of the problem vni a, c, a?, v T , p , X by means of the equality 

AF = {\&6/l)vne%!2 (31) 

([1], Eq. (28 ) ) and Eqs. (27) and (17). The quantity r^ is also an initial parameter of the problem. The parameter r^ consists 

of the multiplier in Eq. (24). Assuming that the substance of the condensation nucleus is not surface-active, we find that the 

only characteristic important for its determination is the number vn of molecules or ions in the nucleus. 

In regard to predicting the energy capacity for heterogeneous phase transformation with a low degree of supersaturation 

of the vapor, the most important formula is that for the threshold value b l r of the chemical potential of the vapor. This quantity 

was first determined by Keller [9] in the case of surface-inactive substances. Expanded in the initial parameters of the problem, 

this formula has the form: 

hu. = 2[2A): 27 i y (32) 

([l],Eq. (11)). 
However, it should be noted that Eqs. (24) and (25) also turn out to be important in experiments. In fact, under natural 

and process conditions (and even in laboratory experiments), the transformation to a metastable vapor is .not usually 
instantaneous. However, as was shown in [10, 11], effective heterogeneous formation of supercritical drops is completed long 
before the moment when the chemical potential of the vapor would reach its threshold value in the absence of absorption of 
vapor by the drops. Thus, heterogeneous nucleation occurs most often by the barrier method. This method of heterogeneous 
nucleation is also described by Eqs. (24) and (25). 

We should also note that in laboratory experiments — which make it possible to instantaneously establish an initial level 
of vapor supersaturation lying to the left of the prethreshold region of vapor supersaturation — Eqs. (24) and (25) will also 
prove more useful than Eq. (32) for using the resulting empirical data to obtain information on the molecular properties of the 
condensing substance. 

We must also mention that the time ^ determined by Eq. (25) gives the scale of the characteristic time for the 
development of heterogeneous phase transformation not only in the prethreshold region of vapor metastability, but also in the 
lower part of the superthreshold region b > b l r . In accordance with (1), c < 0, | c | 1 / 2 < < 1 in this region. 

Let us prove this. Formula (8) and, with it, the approximation 

dF 4a 
-—rrr [e — V-»oV] (33) 

([1], approximation (26)) are not limited by the fact that b < b l r > i .e. , e > 0. It is apparent from (33) and (13) that v > 0 

when e < 0. The fact that the rate v at which the variable v changes regularly over time at c < 0 is positive makes it possible 

to ignore the contribution of fluctuations in heterogeneous drop growth and regard it approximately as a completely determinate 
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(as opposed to random) process occurring at the rate v. At e < 0 and | £ | 1 / 2 < < I, it follows from approximation (33) 
in the neighborhood of the point v = pQ (where this approximation is valid — [1], condition (13)) that | dF/dp | < < 1. We 
also find that, with a high degree of accuracy, W = W 0 in the same neighborhood. Proceeding on the basis of (33) and (13), 
we then obtain 

• ' - ^ n . i + - £ - ( . - . » i 
9vt 

In accordance with (34), the rate v reaches its minimum (positive) at the point v = PQ and increases with an increase 
in | v — P0 J . This increase is more rapid, the smaller | £ | . As a result, we can evaluate the characteristic time r of 
development of heterogeneous phase transformation by means of 

R ~ F — . (35) 
— oo I) 

Of course, the limits of integration in (35) are of purely formal significance. It is important only that the main 
contribution to the integral comes from the neighborhood [ v — p Q | S 61/2P0 | e j 1 / 2 of the point v = p 0 at which the 
condition for the validity of (33) and (34) still holds when | e j 1 / 2 < < 1. Inserting (34) into (35), calculating the integral, 
and using Eq. (14), we obtain 

r - ( 3 7 / 6V ( 2 * r 3 ftf | e | Ah W0~l . (36) 

Let us compare the time r with the time t s, assuming that the negative quantity c in (36) has the same absolute value 
as the positive quantity e in (25) and thus (inaccordance with (2), (12)) satisfies the condition | c | 1/2 - pn

y3 < < I. With 
allowance for (27) and | e | 1 / 2 ~ V i y 3 , w e fincl f r o m (25) and (36) that 

r / r , ~ i (37) 

Although estimate (36) somewhat overstates the actual time of development of heterogeneous phase transformation in the super-
threshold region b > b l r of vapor metastability (the above-ignored fluctuations accelerate this process), relation (37) 
nevertheless shows that the time t s gives the characteristic time scale for the development of heterogeneous phase transformation 
even in the lower part of the superthreshold region of vapor metastability. The region above this part is no longer of interest 
in regard to the occurrence of such transformation with a low level of supersaturation of the vapor. 

The importance of kinetic study of condensation on soluble nuclei also stems from the following. We find from (32) 
that b t r is proportional to c ? , 1 I p ^ 1 1 (and is independent of a)y while it follows from (25), (27), and (17) that ^ is proportional 
to Pn

4/3laa2, Using the symbol 0 0 to denote that the quantities are proportional to one another (as opposed to being of the same 
order, denoted by the symbol ~ ) , we then have 

btr <>*y7"„* (38) 
t s oP^faa2 (39) 

In accordance with (38) and (39), an increase in p n and a decrease in a are accompanied by a decrease in b l r and an 
increase in t^ A decrease in the condensation coefficient a has no effect on b l r but does increase t s . 

Thus, our kinetic investigation leads to the following practically important conclusion: Although an unlimited increase 
in the size of the nuclei dissolved in the drops may make a heterogeneous phase transformation energetically feasible regardless 
of the level of vapor supersaturation, this would inevitably entail an increase in the incubation period — the period which must 
elapse before supercritical drops can begin to systematically form in the vapor. Formulas (38) and (39) show the proportional 
relationship between the dependence of the threshold chemical potential of the vapor and the incubation period on the size of 
the condensation nucleus. This proportionality is more fully reflected by formulas (32), (25), (27), and (17). 

On the whole, Eqs. (32), (24), and (25) permit the following to be stated without exaggeration. In cases in which the 
theory combining thermodynamics and kinetics can predict the possibility of heterogeneous phase transformation with a low 
degree of supersaturation of the parent phase, the same theory can also analytically describe this transformation. 

190 



When discussing the kinetics of heterogeneous condensation above, we always had in mind only the first stage of 
condensation — the stage during which supercritical drops are efficiently formed. The studies [10, 11] provided a general 
description of how the subsequent stages proceed in relation to the first-stage laws discussed in the present article. The same 
studies also examined later stages in relation to the external conditions responsible for the formation of a metastable vapor and 
changes in the concentration of condensation nuclei in this phase over time. 

In practice, the radius R n of a condensation nucleus is a more convenient parameter than vn. The radius of the nucleus 
is connected with vn by the obvious relation 

R« = (3u„ vJ4uY" (40) 

where v n is the volume occupied by one molecule in the nucleus or the mean volume per ion in the nucleus (if the substance 
of the nucleus is an electrolyte). 

By virtue of (9), the supersaturation of the vapor f = pp is connected with the chemical potential b by the equality 
f = exp (b) — 1. At the low levels of supersaturation of interest to us — when b < < 1 — we have f ~ b. This allows us 
to assume that f and b are nearly identical. In this case, the parameter e in (1) can be regarded as the relative deviation of 
supersaturation f downward from its threshold value flr. 

Estimates of Charac ter is t ics of Condensat ion on Soluble Nuclei. To better understand the predictions of the theory 
developed in [1] and in tills article, we will use it to estimate the thermodynamic and kinetic characteristics of heterogeneous 
condensation. 

We put p\(3 — 50, i .e. , vn ~ 1.2-10 5 . This satisfies both limitations (12) and (30) with a large margin of error. We 
then put a ~ 10, v, — 3*10~ 2 3 c m 3 , v t — 10 4 cm-sec" 1 , p — 1 0 1 7 cm" 3, which is characteristic of condensing substances — 
especially water. We also put n n — 10 3 cm"" 3 . For the chosen value of v,, we will have X - 2 -10~ 8 cm. 

The parameter e — in accordance with (1) giving the chemical potential of the vapor b or, equivalently, its 
supersaturation f — is left as a free parameter, since it has a relatively large effect on AF (according to (31)) and greatly 
influences exp ( - A F ) . We recall that e changes only within the range in which estimate (2) is valid. In addition, we do not 
fix the value of the parameter o: — the condensation coefficient of the vapor molecules — since we know relatively little about 
it. 

We use (14-15) and (40) to obtain v 0 ~ 1.3-10 7, RQ = 4.6-10~ 6 cm, R n = 6 .7-10 ' 6 cm, putting v n - V / in the last 
of the approximate equalities for the sake of simplicity. For the relative concentration vju0 of the solution inside the drop, 
we have pnh0 — 9 . 6 T 0 " 3 . 

In accordance with (32), we find b L r = flr - 1 .9TQ" 2 . This shows that heterogeneous condensation is energetically 
possible with very low degrees of vapor supersaturation. 

We can use (31), (27), and (17) to establish AF ~ 8 .2T0 5 c , / 2 , Avc - A^ c - 3-10 5 , W 0 - 6.6 1 0 t o a s e c 1 . For 
the heterogeneous analog of the Zel 'dovich factor in (24) in this case, we have W0/TTAPCAPC = 2.4-10" 1 a sec" 1. 

Finally, in accordance with (24-25), we obtain j ( s ) - 2 . 4 T 0 2 c r e x p ( - 8 . 2 - 1 0 5 c l / 2 ) c m " 3 sec"1 and t s - 0.7 a" 1 sec. 
By strengthening inequality (12) without violating inequality (30) (particularly at a < < 1), for y j / 3 we can take a value 

several times greater than the chosen value of 50. Here, as can be seen from (38), there would be a decrease in the threshold 
value b l r . However, as can be seen from (39), there would also be a sharp increase in the time t̂ . 

For the condensation of water vapor in a drop a - 1 0 _ 1 - 1 0 ~ 2 [3]. In the winter atmosphere, usually p + p g ~ 
(10 I 8-10 2 0) cm" 3. Limitation (30) then even allows v n

U 3 - l O - l O 3 , i .e., ~ (2-10" 6 -2-10' 5 ) cm. In this case, we have 
b t r ^ ftr ~ 6 .6T0" 3 -2T0~ 4 and t s ~ (10 2 -10 7 ) sec. Thus, the supersaturation of water vapor may even be very slight for its 
effective heterogeneous condensation. An enormous range of incubation periods (embracing five orders) is possible in the large 
scales of the physics of the winter atmosphere. 

We could have examined a diffusional regime of mass exchange between drops and vapor, along with a regime 
representing a transition from free molecular exchange to diffusional exchange. This would have made it possible (without 
particular technical complications) to generalize the theory to the region of condensation nuclei large enough so that limitation 
(30) would be unnecessary. However, although the threshold value b l r of the chemical potential of the vapor would be 
extremely small given such nucleus dimensions, the incubation period t s would be so huge that the theory would have almost 
no practical application. 

In this connection, it is appropriate to recall the observation made in [1] that for very large condensation nuclei and 
a high concentration of passive gas in a v a p o r - g a s medium, thermodynamics itself places a restriction on the smallness of the 
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threshold chemical potential of the vapor: the latter has a lower bound of v ,p g . At v / s 3-10" 2 3 c m 3 , P g ~ 1 0 1 9 cn r 3 , we 
have vfi - 1 ( K If p 1 / 3 > 10 3 , then the quantity vlpg (which is independent of PN) also influences the threshold value of the 
chemical potential and supersaturation of the vapor. Here, the level of supersaturation will generally be as low as is permitted 
by thermodynamics. 
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