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A general interpretation of homogeneous nucleation as a heterogeneous process, in 
which the role of the nucleation site is played by individual molecules, has been 
given. Such an approach gives a correction to the work of formation of a nucleus 
under various conditions, which is significant for the kinetics of nucleation. 
The form of the correction depends on the presence or absence of thermal (but 
not diffusional) equilibrium between the nucleus and the surrounding medium. 

The traditional separation of nucleation processes into homogeneous and heterogeneous 
processes, which followed from the work of Gibbs [1] and Volmer [2], calls for the definition 

; of the boundary between the cases of the formation of nuclei within the bulk phase and on 
a boundary between two phases. A special type of heterogeneous nucleation is the formation 
of a nucleus on a nucleation site, i.e., on a sufficiently small foreign particle, which is 
completely enveloped by the substance of the new phase. Here we are already dealing with 
a microheterogeneous system, and as the size of the core is reduced, the difference between 
the heterogeneous and mixed homogeneous mechanisms of nucleation becomes increasingly hypo­
thetical. In experiments many sites demonstrate high activity even when they have only 
molecular dimensions. They include, for example, individual ions, for which a theory of 
nucleation has been systematically formulated in the framework of a heterogeneous mechanism 
[3-5]. From this point only one step remains before individual molecules will be interpreted 
as nucleation sites, in a typical process of homogeneous nucleation. In fact, if a nucleus 
is formed, as is usually assumed, by means of the successive addition of individual mole­
cules, the primary act in homogeneous nucleation is the addition of the "second" molecule 
to the "first," rather than the creation of the "first" molecule, since the individual mole­
cules of the substances are already present in a usable form. There is no doubt that such 
a primary act of homogeneous nucleation occurs only at the place where the "first" molecule 
is located (the numbering, of course, is arbitrary), i.e., nucleation occurs, as in a hetero­
geneous process, only on a "site." 

The creation of a theory of homogeneous nucleation on the basis of the ideas associated 
with heterogeneous nucleation will be the subject of discussion in the present work. We at 
once note that such a discussion cannot be reduced to questions of terminology, and it should 
provide a correction to the work of formation of a nucleus, which escapes attention in the 
theory of homogeneous nucleation or is introduced in a more artificial way [6, 7]. Along 
with the corrections for the parameter describing the curvature of the surface of a nucleus 
[8, 9] and the corrections appearing as a result of the use of various methods for the 
statistical-mechanical description of small systems [6, 9], it may play a significant role 
in the kinetics of nucleation. 

One central point in a theory of nucleation is the calculation of the work of formation 
of a nucleus of the new phase. As was shown in [10] (see also [8, Chap. 15; 11, Chap. 18]), 
this work depends on the external conditions of the nucleation processes both at equilibrium 
and in the absence of equilibrium between the nucleus and the surrounding medium. The most 
complete expression for the work of formation of a nucleus is given by the change in energy 
AU. In particular, in the case of homogeneous nucleation in the absence of equilibrium be­
tween a nucleus and the surrounding medium [10], 

ДУ = (Га — 7е) S a -f- (Г9 — T)S — (pa — /#) V a -f-
{P-p*)v + oA + 2 (K - tf) v< + 2 И' - Nt
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where T is the temperature, S is the entropy, p is the pressure, V is the volume, о and A are 
the surface tension and the area of the tension surface on the boundary between the nucleus 
and the medium, u is the chemical potential, v is the number of molecules in the nucleus, 
and N is the total number of molecules in the system. The index i refers to the components; 
the superscript a refers to the new phase (its volume V a is defined, as usual, by assigning 
a separating surface, for which we selected the tension surface; the quantity S a also in­
cludes the excess entropy due to the medium); the superscript (3 refers to the medium (the 
mother phase) after the formation of the nucleus; the quantities without a superscript on 
the right-hand side of (1) (except oA) refer to the medium before the formation of the 
nucleus. Expression (l) contains differences of two types. The differences between quanti­
ties with the superscript f5 and without a superscript reflect the change in the state of the 
medium during the formation of the nucleus, and the differences between quantities with the 
superscripts a and (3 (except p a — pP) indicate the absence of equilibrium between the nucleus 
and the surrounding medium. 

Expression (1) gives the work of the isentropic-isochoric process. Similar expressions 
for other conditions are obtained from (1) by eliminating the corresponding terms: for iso­
thermal conditions the term (TP — T)S is discarded (in this case AU is automatically replaced 
by the change in the free energy F = U — TS), etc. If the temperature and the chemical poten­
tials of the medium are held constant (the external pressure is then also constant), the dif­
ferences of the first type in (l) vanish, and the expression for the work of formation of a 
nucleus takes on the form 

ДО. = (Г — T)Sa — {p« - p) Va + eA + 2 (p.f - R) V I (2) 
i 

where QsiU — T S — i s the Gibbs thermodynamic potential. 

In the case of a spherical nucleus in mechanical equilibrium with the surrounding medium, 
the condition 

pa—p = 2a/r (3) 

(r is the radius of the tension surface) is fulfilled, and (2) is transformed into 

AQ = ± a A + (Ta - T) Sa + 2 (u-f - v: (4) 

If, in addition, thermal equilibrium has been established between the nucleus and the medium 
(but diffusional equilibrium is absent), Instead of (4) we have 

AO =l C T,4 +2(u?-F,)v,- (5) 
d i 

Finally, In the case of total equilibrium between the nucleus and the medium, we obtain 
the classical result [1] 

AQ = ±aA (6) 

A similar formula for the work of formation of an equilibrium nucleus was obtained by 
Gibbs for the case of heterogeneous nucleation (the nucleation of phase a on the boundary 
between phases p and у): 

AQ^~aA + |Д(оА)„ (7) 
3 i 

where Д(оА)п £ aaYAa>' - о$ЧА$Ч. When applied to nucleation on a site, Gibbs1 formula (7) 
is valid only in the case in which the site is soluble, its substance is found in the mother 
phase 0, and it has a constant chemical potential. In the case of a practically insoluble 
site, in which it is impossible to fix its chemical potential, Eq. (7) must be replaced by 
the relation [11, Eq. (18.70)] 

ДО -= 1 a A + - Д {oA)n + /пД |i„ = - a A + W„ (8 ) 
3 3 3 

where m is the number of molecules in the site, and Дц п is the change in their chemical poten­
tial during the formation of the nucleus (the subscript n refers to the site). The quantity 
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W„ = j Д (аЛ)„ + тДц„ (о) 

is the work needed to transfer the site from the mother phase p (the medium) to the new phase 
a (in the case of the condensation of a vapor, it is the work of wetting of the site, and 
for the sake of brevity we shall, refer to it as such) [11, 12]. We stress that the work of 
wetting W n is not necessarily associated with nucleation and can be determined in an inde­
pendent experiment. 

Equation (8) is distinguished from Eq. (6) by the correction W n. However, if each mole­
cule in a homogeneous system is considered to be a potential nucleation site, a similar cor­
rection should apparently also appear in (6). How can its absence be explained? It may, of 
course, be stated that a correction associated with a single molecule cannot be significant 
for the fairly large nucleus described by the macroscopic language of Eq. (6), but it cannot 
be forgotten that the quantity defined by (6) appears in the exponents in kinetic relations. 
The main reason lies in the difference between the approaches to the derivation of Eqs. (6) 
and (8). During the derivation of (6) it was always assumed that the observed region of the 
system (gas, solution, etc.) is statistically completely uniform at the initial moment, where­
as during the derivation of (8) it was assumed that the nucleation site is already present 
in it. 

In other words, (6) was derived from the point of view of an outside observer viewing a 
certain portion of a homogeneous system, and (8) was derived from the point of view of an ob­
server attached to the center of mass of the site (in the former case, all the molecules in 
the system, as well as any nucleation sites, if they would appear in it, are in continual 
motion, and in the latter case, the center of mass and the entire nucleus are at rest). Nov 
the inconsistency is clear, and a unified approach must be selected to remove it. The point 
of view of an observer attached to the center of mass seems more reasonable (we recall that 
thermodynamic quantities for a nucleus with a center of mass at rest appear in many relations 
in the theory of nucleation), and if we adopt it, Eq. (8) will have a general character and 
will be equally applicable to processes of heterogeneous and homogeneous nucleation. The 
work of wetting W n for the latter will have the meaning of the work needed to transfer one 
molecule from the mother phase (the surrounding medium) into the new phase (in a large volra), 
the center of mass of the molecule being fixed in each of the phases. 

A simple and convenient expression can be obtained for the work of wetting Wn. Referring 
to Eq. (9), we shall first consider an ensemble of macroscopic nucleation sites distributed 
at equilibrium between the mother phase (3 and the new phase a, which are taken in large 
volumes. Each site may be treated as a dispersed particle with the chemical potential [13] 

u,„ = i- anA,t + mu„ -f kT In с,„Л;'„ (Ю) 

where к is Boltzmann's constant, c m is the equilibrium number of cores in a unit volume, and 
A m is the mean de Broglie wavelength for an individual site [we have not written the activity 
coefficient in expression (10), assuming that all the interactions, including the interacts 
of the sites with one another are taken into account in the quantity o nA n ] • The equilibria 
distribution of the sites between the phases corresponds to equality between the values of 
u m in phases a and (3. Utilizing this condition and Eq. (9), we at once obtain the expression 

W^ = -kTln{cl/d) (11) 
where the superscript pa indicates the direction of transfer (from phase (3 to phase a). Ex­
pression (11) is convenient, since it does not contain any macroscopic parameters of the 
theory of surface phenomena and it has a simple physical meaning for sites of any size, in­
cluding individual molecules. It relates the work of wetting of a site W n to the equili­
brium distribution coefficient of the sites c m

a/c mP. 
The expression for the chemical potentials of individual molecules is usually written in 

the form 
m^tf + kTlnyt + kTlnctA? (12) 

where is the standard part of the chemical potential, which originates from integration 
with respect to the internal degrees of freedom of the molecule, is the activity coeffi­
cient, c^is the volumetric concentration, and A^ is the mean de Broglie wavelength for the 
individual molecule. In this expression that term kT In is the microscopic form of the 
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quantity onAn/3 in (10) obtained when (10) is extended to individual molecules [14]. Equating 
the values of in phases a and 3, we again arrive at expression (11) in the form 

Wf* = Ли" + kTA In vi = - kT In [cf/Jj) (13) 
where c^/c^ is the equilibrium ratio between the concentrations of component i in coexisting 
phases a and {$ for assigned values of the chemical potentials. In the case of a one-component 
liquid (a)-vapor (($) system, it is the ratio of the density of the liquid to the density of 
the vapor and has a fairly large value. 

Using (13), we can write expression (8) for the case of homogeneous nucleation in a multi-
component system as 

AQ< = ± o A ~ kT In{cf/cf) (1 = 1,2,...) (14) 

where a and A refer to a nucleus with a fixed center of mass. The quantity ДЙ now has the 
subscript i, which indicates that the work for the formation of the same nucleus depends on 
which of the components played the role of the "seed." Molecules of different kinds will 
serve as nucleation sites with different probabilities: the higher is the affinity of a com­
ponent toward the new phase and, accordingly, the greater is the ratio с^а/с^Р, the more ac­
tive is the particular component in the nucleation process. 

At an assigned temperature the value of the ratio c^a/c^P depends on the values of the 
chemical potentials of all the components. If they are such that the pressures in phases 
a and p are equal and the phases can, therefore, coexist when a flat interface is present, 
the ratio Cj a/cj^ becomes the ordinary distribution coefficient Kj = c^co

a/c^00P (the subscript 
m refers to a flat interface, for which r = °°), which can be determined directly from an ex­
periment. In other cases, phases a and p can exist in equilibrium only when a curved inter­
face is present; this situation, incidentally, does not rule out the possibility of the ex­
perimental determination of c^a/c^ by introducing, for example, a porous diaphragm with an 
assigned radius for the continuous pores extending between phases a and 3, which are taken in 
large volumes. It cannot be said that such an experiment is always easy to carry out, and 
for this reason it is desirable to have some a priori relation between c^a/c^P and the equili­
brium distribution coefficient Kj_. If the content of component i in phase g is low (for ex­
ample, if phase 3 is a gas or a dilute solution of component i), the concentrations and 
Cp,P are related by the simple expression 

Ci = c'e„ exp — (15) 
kT 

where the difference — ŷ «, assigns the degree of supersaturation of the medium. On the 
other hand, if phase a is a relatively incompressible condensed phase of constant composi­
tion, the concentration c^ a is always constant (cj a ra c^ r a

a), and then 

— kTln—^ — Л П п ^ + ц, —n«~ ( 1 6 ) 

ci 
In the case of a one-component condensed phase (a), we may write the more exact expres­

sion 
lnc?=lnc?M + c?„X«(Hf —u.i-«) (17) 

where x is the isothermal compression, and then from (15) and (17) we obtain 

— kT In 4~ = - kT In Ki + (Ц,- — |K •) (1 - kTc"x-&) (18) 

The substitution of this expression into Eq. (14) gives 

AQt = i. a A - kT In Kt + (fit — Ik oo) (I — kTcUli) (19) 3 
Equation (19) is applicable, in particular, to the case of the condensation of a substance 
from a gaseous mixture. 

For the sake of being specific, until now we have been referring to a correction to the 
work of the homogeneous formation of an equilibrium nucleus under the conditions of constancy 
of the temperature and the chemical potentials of the medium, i.e., to a correction to Gibbs1 

formula (6), but the same correction should clearly appear under other conditions in the ana­
logous expressions for the changes in the energy, free energy, enthalpy, and Gibbs thermo-
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dynamic potential [8, 10, 11]. A corresponding correction „ „ „ хт.и 
the expression for the work of formation of a nucleus in the absence of equilibrium between 
it and the surrounding medium, i.e., a work team which plays an important role in the kinetics 
of nucleation. 

Upon the transition to mechanical equilibrium, the general expression for the change 
in energy upon the formation of a nucleus (a) on a spherical site (y) in the absence of equi­
librium between the nucleus and the medium (p) [8, Eq. (XV.63)] takes on the form 

AU = - oA + [Ta — Tp) (Sa + Sv) + (Te — 7) S + 3 
(P - P*) V + 2 (ji? - u?) v, + 2 (uf - Ц.) -f Wn 

(20) 

where W n, as before, is given by Eq. (9), but the expressions for all the other quantities 
correspond to the absence of equilibrium between nucleus and the medium. In the case of 
geneous nucleation, in which the role of the site is played by a single molecule of one of the 
components (j) with a fixed center of mass, expression (20) is written as 

At/, ~-^oA + (Ta — 7P) Sa + (T15 - T) S + (p - pP) V + 
3 (21) 

2' (и? - Ф v<-+2' (Hf - ^ + w > 
i i 

and under the conditions of constancy of the temperature and the chemical potential of the 
medium 

AQ,- = \вА + (Ta - T)Sa+ 2' itf ~ Vt) V* + W, (22) 

In Eqs. (21) and (22) the prime signs following the summation symbols indicate that one of 
the molecules in the nucleus, particularly the one which is considered as the nucleation site, 
is not included in the summation. The sums thus contain one difference of the type u a - u 
fewer than would have been expected according to the number of molecules in the nucleus. 

Let us turn to the derivation of an analog of expression (13) for the case of a nonequili-
brium nucleus. We shall again use expression (12) and define the difference yj a - pj corre­
sponding to the transfer of a molecule of component j from the mother phase to the new phase 
in the absence of thermal and diffusional equilibrium between them: 

u? - u / = Д (u?+ kT In 7/) + kA {T lnc/Л?) - Wj + kA (7 In С /Л •) (23) 
Hence we have 

W/^nf-liy-AAfFlnc/A?) (24) 
The substitution of (24) into (21) and (22) "restores" the difference y j a - UJ to the 

sums marked with prime signs. As a result we have 

AUj = - a A + (Ta — 7й) Sa + (Г11 — 7) 5 + [p ~ pt>) V + 3 
2 (C? - V$ v, + 2 - V-д Ni - kA (T lnc/Л/) ( 2 5 ) 

i i 

до,. = 1 а Д + ( Г _T ) Sa + 2 (ц?-v,- - kA (T In с,Л/) (26) 

where the summation is now carried out for all the molecules in the nucleus. We recall that 
the symbol Д indicates a difference between the values for phase a and the medium in its 
initial state. 

Expressions (25) and (26) differ from expression (l) [after the substitution of condi­
tion (3) with p = pP into it] and, accordingly, from (4) only with respect to the last term, 
which gives the value of the correction sought under nonequilibrium conditions. We see that 
in the absence of thermal equilibrium the correction has a more complex form (as a consequent 
of the temperature difference, the values of Aj for the nucleus and the medium also differ, 
since the mean de Broglie wavelength is a function of the temperature). Once thermal equi­
librium between the nucleus and the medium has been achieved (but diffusional equilibrium 
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has not been achieved), the correction takes on the same form as in the case of a nucleus 
at complete equilbrium: 

A ^ - l ^ + ^ - ^ S + ^ - ^ l z + S O i f - ^ ^ + SOxp-^^-fcT - I n ^ (27) 

^ Л + 2 0 * ? - Ы ^ - А П п - ^ ( 2 8 ) 

Relations whichare intermediate between (25) and (26) can be obtained: for the free 
energy by omitting the third term, for the enthalpy by omitting the fourth term, and for the 
Gibbs thermodynamic potential by eliminating the third and fourth terms on the right-hand 
side of (25). The transition to thermal equilibrium between the nucleus and the medium is 
taken into account by omitting the term (T a - T^)Sa, and the transition to diffusional equi­
librium is taken into account by eliminating the terms (u^ - ц^)ч^. It may thus be assumed 
that we found the correction indicated for all the main types of thermodynamic processes. 

In conclusion, we shall discuss the practical importance of the correction introduced. 
As was pointed out above, it is easily calculated, for example, for the process of the homo­
geneous condensation of a vapor. The ratio of the density of a liquid to the density of a 
vapor may be on the order of 10 4 to 10 s, and since it appears in the kinetic relations in 
the form of a pre-exponential factor (its logarithm together with the entire expression for 
the work is found in the exponent), consideration of the correction in that ratio increases 
the calculated value of the rate of condensation. In a recent investigation [15] good agree­
ment between the calculated and experimentally observed rates for the homogeneous condensa­
tion of toluene at almost macroscopic values of the surface tension and the condensation co­
efficient was achieved by introducing, according to [6], a pre-exponential factor containing 
the ratio between the densities of the phases. Evaluations of this kind suggest that the 
treatment of homogeneous nucleation on the basis of a heterogeneous mechanism not only gives 
an interesting theoretical interpretation of the phenomenon, but also has practical signifi­
cance . 
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