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The dependence of the heat of transfer of a vapor-phase molecule into a droplet on 
the number of molecules in the droplet has boon found for a homogonoous drop list and 
a droplet fovmod on a chargod IUU'.UUVM (or Ion). Similar n>lal IOIIM liavn l<»»»<n w\\ 
tained for the increments of the total entropy and enthalpy of a droplet upon Llio 
additon of one molecule. These expressions for the thermal characteristics of the 
transfer of a vapor-phase molecule into a droplet were determined with consideratio 
of corrections given by parameters of the curvature of the droplet, and in the case 
of a droplet on a charge nucleus, they describe the influence of the sign of the 
charge of the nucleus. 

The important characteristics of small droplets include the thermodynamic quantities 
which define the thermal effects of the transfer of a vapor-phase molecule into a droplet. 
The present work is devoted to the investigation of the analytical dependence of the follow
ing three such quantities on the droplet size: the heat of condensation, the enthalpy, and 
the entropy per molecule in a droplet. Our purpose was to take into account the influence 
of the corrections for the droplet curvature appearing in the description of surface phe
nomenon by the Gibbs method of finding an expansion in a parameter of t.ho curvjituro In I Im 
case of a homogeneous droplet [1] and a heterogeneous droplet formed in the strong electric 
field of a charged condensation nucleus [2], The droplet size is understood to be the number 
of molecules found in it. 

Homogeneous Droplet. Let us consider a spherical droplet containing v molecules in 
equilibrium with a vapor at a certain temperature T. We shall define the heat of isothermal 
condensation q v of a molecule from the vapor in the droplet by the relation 

7 v = r ( s v - s ? ) ( i ) 
where s v is the increment of the total entropy of a droplet of size v upon the addition of 
one molecule, and s§ is the entropy of a molecule in the vapor in equiUbrium with a droplet 
of size v (the superscript 0 will denote quantities referring to the vapor ovorywliori' In t h»> 
following). 

Considering the vapor as an ideal gas, for s(J we havo 

S l W „ - * B In (/.?//£) (2) 
where k B is Boltzmann's constant, the infinity sign °° indicates that the respective quantity 
is determined for equilibrium between the liquid and gaseous phases at the assigned tempera
ture T at the limit of a planar interface, and p£ and p£ are the vapor pressures at equilib
rium with a drop of size v and a planar surface of the liquid, respectively. The quantity 
ln(pg/p£) coincides with the shift of the chemical potential of the vapor expressed in unity 
of k BT: b = (P V " u„o)/kBT. According to [1], when the corrections for the curvature of the 
droplet are taken into account, the expression for ln(p5/p£) has the form 

in (Pt/Pi) = fcv = } av~'/. [ . - ( * + ! V'-] (3) 

where 
4 n Y « . f 3 \''' / 4nn a \ 
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ct^27Ur^l-~-J (5) 

Y is the surfce tension, n a is the number of molecules in a unit of volume of the liquid 
phase (the superscript a will designate quantities referring to the liquid phase everywhere 
in the following), A = r/(n a - n* 5), r is the Gibbs adsorption, and x is the compressibility 
of the liquid. We note that it is assumed in (3) that one of the small parameters Cj^v - 1' 3 < 
1 or c 2 v - 1 ' 3 < 1 is dominant over the other. It is seen that relations (2)-(5) completely 
define s v. 

Let us now find the dependence of s v on v. According to [1], when n a > n&, the number 
of molecules in a droplet is related to the radius of the tension surface of the droplet r 
by the equation 

A similar relation can also be written for the total entropy of a droplet S v: 

S v = i^i-n«s«+4n/-2i (7) 

where s is the excess entropy per unit of the tension surface of the droplet. We note that 
the validity of (7) presupposes the fulfillment of the inequality 

s^-Xn's* (8) 
which allows us to consider the radius of the equimolecular surface of a droplet as its phys
ical boundary. 

The dependence of S v on v is defined by the dependence of r, n a, s a, and s on v. Ac
cording to [1], for n a we have 

n«=*n£ (1 +cav-V.) ( g ) 

which is essentially on expansion of the density in a series with respect to the excess pres
sure within the droplet 

Ap r = 2̂ /r ( 1 0) 

We can write a similar expansion for s a: 

s a = s a an 
The retention of two terms in the expansion will be substantiated below. We shall now take 
into account the following equalities 

T 

where c t p s = (—l/rt„°) (dn^/dT)^ is the coefficient of thermal expansion of the liquid (we shall 
neglect the weak dependence of otp on the pressure). Using (4)-(6), (9), (10), (12), and Tol-
men's relation for the surface tension y 

Y = T„(l-2X./r) (13) 
we transform (11) into the equation 

s" = «i [ 1 - 2 0 ^ - ' / . + 2 K l (Cl + 1 ct J v-Vi ] (1A) 

Here for the sake of convenience in writing the equation we used the notation 

A I S ± V £ B ! ( 1 5 ) 

The smallness of a^'1^3 (the characteristic value of a1 £ 0.1), as well as the smallness of 
the parameters of the curvature c ^ " 1 / 3 and c 2 v - 1 ^ 3 allow us to terminate series (11) for s a 

at the third term. It is clear that the third term in (14) has a first order of smallness 
with respect to the parameter of the curvature in comparison to the second term. In the 
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following we shall neglect the quantities of second order of smallness with respect to the 
parameter of the curvature everywhere. 

In order to find s, we shall utilize the system of equations of the thermodynamics of a 
surface layer [ 3 ] 

d T = — rdfi—sdT 

dr-dp*-&—2-dr ( 1 6 ) 

dpa* = na*dn+s"-tn"-tdT 

Hence after some simple transformations we find the exact thermodynamic relation for s 

; = + (s«n«--sW)?, ( 1 7 ) 

Recalling inequality ( 8 ) , we see that for (9Y/3T)J - < 0 inequality ( 8 ) holds when 
sana>s*n> ( 1 8 ) 

In view of the fact that s a < sP (the characteristic value of sP/s a is - 1 . 5 - 2 ) and the fact 
t h a t n a » n P , strong inequality ( 1 8 ) and, therefore, ( 8 ) may be considered fulfilled. Then, 
taking into account ( 4 ) - ( 6 ) , ( 9 ) , ( 1 3 ) , and ( 1 5 ) , with the same accuracy as in ( 1 4 ) we find 

s = - % + s«n«\x + 2 (YccC, - a^lr&K, ) v-v. ( 1 9 ) 
oT \ aT I 

The last two terms in ( 1 9 ) should clearly be taken into account only at values of v at which 

V ' < 1 . - 4 N ^ W . < 1 ( 2 0 ) 
" o o S o o a l na>/' Yco dT "oo 

In view of the absence of literature data on dlnX«,/dT, we shall only evaluate the second in
equality in ( 2 0 ) . Using the data from [ 4 ] for water, we find that this inequality will be 
violated only when v > 1 0 8 , at which the last two terms in ( 1 9 ) may be totally neglected. 

Now substituting ( 6 ) , ( 9 ) , ( 1 4 ) , and ( 1 9 ) into expression ( 7 ) for the total entropy of 
a droplet S v, we obtain 

S v = sSv + o*Bv'/. (y -1o) - a ^ v v . [2c, (y - \ v + + } c a ( y -1»)] ( 2 1 > 

Here we have introduced the new notation: 

din v . ~ <"nn£ ~ 
v^—7uPT' X==~ M (22) 

The values of y and v are positive, but there are no data on the magnitude or sign of X (the 
sign of X is presumably the reverse of the sign of XM). 

According to the previously given definition, s v is equal to the derivative of the total 
entropy of the droplet S v with respect to the number of molecules v at a fixed temperature. 
Therefore, differentiating ( 2 1 ) with respect to v , we obtain 

S v = s« +|afr Bv - ' / . ( v _ |vj - J-aV- 7*^ ( T - + » ) ] ( 2 3 ) 

Next, substituting ( 2 ) , ( 3 ) , and ( 2 3 ) into ( 1 ) , we arrive at the following expression for the 
heat of condensation 

where 

? V / V ' = p v = = p o o + J - a v - V . ^ l + Y - J - o ) — | - a v - V . ^ C l + ± £ j ( 2 4 ) 

5 = C i ( l + T - j » + £ ) . ^ 3 C , ( l + . 2 f - - i » ) ( 2 5 ) 
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TABLE 1. Heat of Condensation for a Planar Interface, Para
meters of Eq. (26), and (A0 v°')h Om ^ f c^ e calculation was car
ried out for T = 298°K) 

Liquid Poo 0 a w t f ' w - 1 0 ' 
Water 
Methanol 
Ethanol 
Benzene 
Toluene 

—17,93 
—15,54 
—17,25 
—13,77 
-15,46 

0,08 
0,34 
0,32 
0,36 
0,31 

0,66 
1,08 
1,07 
1,48 
1,30 

8,23 
4,33 
5,55 
9,29 

10,37 

1,18 
1,15 
1,48 
2,99 
3,12 

and Poo = (sg - s£)/kfj. When the corrections given by the parameters of the curvature are 
neglected, expression (24) is transformed into Sreznevskii's formula [5]* 

(26) 

Since pa, is negative (sS < s£, i.e., heat is evolved upon condensation), and since the 
sign of (APv°^)hom * s positive, the absolute value of the heat of condensation p v also de
creases with decreasing droplet size. For comparison Table 1 presents the values of v, 
y, and (Apv°))hom calculated from the data in [4, 8J at T = 298°K for water, methanol, 
ethanol, benzene, and toluene. The values of (&P V )hom w e r e found for v = 10 2; at such 
values of v the corrections given by the parameters of the curvature also become significant. 

The problem of the dependence of the heat of condensation of the droplet size in the 
case of small homogeneus droplets in equilibrium with a vapor was also solved in [9]. The 
result obtained here [Eqs. (14), (19), (21), (23), and (24)], is distinguished, first, by the 
fundamental consideration of the term —(4/9)av - 1' 3v, which is related to the coefficient of 
volumetric expansion of the liquid, second, by the explicit consideration of the corrections 
given by the parameters of the curvature, and, third, by the fact that all the final equations 
are written in the variable v. This is considerably more convenient in evaluations and per
mits direct comparison with data from mass-spectrometric experiments. 

Relation (24) can also be obtained from more general arguments. Let us consider a drop
let which is not in chemical equilibrium with a vapor (u v * ). We shall assume that the 
process of the transfer of a molecule from the vapor into the droplet takes place at constant 
values of pP and T. The work for the transfer of a molecule from the vapor into the droplet 
is equal to u v — \fi in this case. In view of the general thermodynamic equality sN, = — (9u^/ 
9T) V {which can be substantiated in the framework of the quasi-chemical method of describing 
droplet—vapor systems [1] and is confirmed by Eqs. (3) and (23)} for the heat of condensa
tion, we can write an analog of the van't Hoff equation: 

a 
dT 

(27) 

where h v = u v + Ts v is the change in the total enthalphy of a droplet of size v upon the ad
dition of a molecule, and h^ is the enthalpy of a molecule in the vapor phase at the assigned 
pressure pP. When u v = and (3) is taken into account, relation (24) follows from (27). In 
the approximation of an ideal vapor, hP = hP (the enthalpy of a molecule in the vapor phase 
is not dependent on the pressure at a fixed temperature). Since h v is not dependent on the 
state of the vapor, expressions (24) and (27) for the heat of condensation on a droplet of 
size v remain valid as a whole for droplets not in equilibrium with the vapor phase.t In 
this case, the equality h v — hS = Aq v holds. Making the transition to the dimensionless heat 
of condensation p v and the dimensionless chemical potential b v, we write the equality just 
indicated with the aid of (27) in the form 

ApV (28) 

*A relation for the variation of the heat of transfer at an assigned droplet radius was found 
in [5}. A similar equation, which, however, did not take into account the thermal expansion 
of the liquid, was obtained in [6, 7]. 
tStrictly speaking, only in the sense of analytical extrapolation at b * b v. 
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Restricting ourselves to consideration of droplet—vapor equilibrium, from (28) and (3) 
we conclude that the Clausius—Clapeyron equation also remains valid in the case of a phase 
transition at a curved interface : 

-^dfi=-2fdT (29) 

where n§ is the number density of the molecules in the vapor in equilibrium with a droplet of 
size v. 

Heterogeneous Droplet. In order to find the dependence of the heat of condensation of a 
molecule on a droplet formed on a charged nucleus on the droplet size, we shall utilize gen
eral relation (28). According to [2, 10], in the case of a heterogeneous droplet, the chem
ical potential b v Q f a droplet — vapor equilibrum is defined by the relation 

A v - j av-v. [ 1 _ (Cl + 1 c.)v-'/. + cv-i' -

- 1 a?v-V.^1 + 2 (cx + 1 ct + ct - c.) v-v. _ | {C, + 6c5) v-v. + 4 (c7 -

where 

aq s (4nu„«f/fcBT) (4ni&/3)'\ = _ L ( ' L) 
on \e e / 

c3 = (4 mli2>) '''x^q2, ct = (4w&/3) ~'u ^yJZuxzl 

2 , 
v 

(30) 

(31) 
cb = (4w£/3),/,8<BflrV6a£, c„ == (4nnS,/3)v> *,/2m« 

8oo = ( 3 1 n e S / 9 M)T< 1 * s th e electric charge of the nucleus, e is the dielectric constant, 5 s , , 
is the spontaneous surface polarization, and k1 and k 2 are the coefficients of the contribu
tions which are linear and quadratic with respect to the induction to the induced surface 
polarization. Substituting (30) into (28), with consideration of (25) and definitions (22) 
and (26) we obtain 

APv - ( A P ^ h o m - } av-v. p + 1 c ~ ) + 1 av-v.77 -

- 1 aQv->>. ( l + Z + ± ~ v ) - l a,v-V. p + 1 ?2 + c4 - c.) + £ a,v'/. (c, + 6c6) - j a,v-V. p - } S) ( 3 2 > 

where we have used the notation 

= C l (1 + u + 2/3o + X), c2 s ca (1 + u + %v + v) 
c, = c3 (1 + 2u + 5/3o), c4 = c4 (1 - l/3v + y — e + §), 

^ s ^ J l + a + y B - e + S), c 6h=c 6(1+2/3v + £ ) (33) 

c8 = c 8 ( l + 4/3y + I 2 ) 

and 
d l n « „ , ~ dine" ~ d In (dPjdp) 

u == , e =2 • 
d l n T dlnF d l n T 

£ i S B _ £ M l , ft^-li^, ff^-ii^. 
1 d i n T ' 2 d l n r d l n T 

(34) 

*In view of the fact that a quantity which is, in fact, equal to the heat of transfer of a 
molecule from the bulk of a vapor into the bulk of a droplet was called the heat of trans
fer of a molecule into a droplet in [9], the equations of the two-phase droplet—vapor equi
librium written in [9] do rot reduce to the Clausius—Clapeyron equation. 
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TABLE 2. Parameters of Eq. (35) and Maximum Value 
of (Ap("-'het(the calculation was performed for T = 
298°K) 

Liquid u 

Water 145,1 1,4 0,02 2,32 
Methanol 111,0 1,6 0,05 1,36 
Ethanol 98,4 1,8 0,08 1,32 
Benzene 47,9 0,3 0,2 5,70 
Toluene 47,5 0,3 0,2 6,37 

The values of u, e, k\, and 8 are positive. The sign of & and k 2 are determined by the sign 
of the surface jump in the electric potential upon passage from the liquid into the vapor. 
As is seen from (31) and (33), c 7, c 7, and c 8 depend on the sign of the charge of the nu
cleus in (32). The contribution of the terms in (32) with these coefficients rapidly in
creases with decreasing droplet size. In the case of very small droplets, the dependence on 
the sign of the charge may be very significant and can be observed experimentally by compar
ing the heats of condensation in the case of droplets formed on oppositely charged ions. 

As is seen from (32) and (26), the dependence of 0 V on the droplet size is basically 
defined by the relation 

(APv\ e t==}av-v. ( 1 _ | ; r + v')-.la,v -» / . ( l + " + 7 " ) <35) 

Table 2 presents values of the parameters u, aq, and e calculated from the data in [A] 
for water, methanol, ethanol, benzene, and toluene at T = 298°K. The values of (&P^°')het 
presented in Table 2 correspond to the maximum value of the right-hand side of (35) for each 
substance and have an approximate character. 

The values of (3V for small clusters (v = 1 to 10) of different substances were deter
mined directly in mass-spectrometric experiments in [11]. Qualitative agreement with the 
fundamental formula for (&P$, )het w a s discovered in these experiments and that the nature of 
the condensation core (ion) becomes insignificant already when v 2 7. 

It is not difficult now to find the dependence of the increment of the total entropy of 
a droplet upon the addition of a single molecule on the sign of the charge and the size of 
the droplet with the use of the aforementioned equality Ah/kgT = Af$v and the definition of 
the enthalpy 

As s — s a 

- - ^ - ^ - - A P v - f c v ( 3 6 ) 

Substituting (30) and (32) into (36), we find 
As" Asv 

*B 
— — av-'/>l(c1'-

*B /net 3 L )] + }a v - 4 / , 6-c 7)-}a,v-V . | p 

18 3 c7— y(<V •4] 

where 

(37) 

(38) 

i.e., a relation which defines the principal dependence of s v on v. From (37) and (38) it 
is seen that the relative role of the corrections given by the parameters of the curvature for 
As v is increased in comparison to the case of A0 V. This occurs as a consequence of the par
tial compensation of the principal terms in (30) and (32) when they are substituted into 
(36). As the estimates of u, e, y» and v presented in Tables 1 and 2 show, -the contribution 
of the principal term to s v, which is proportional to the square of the charge of the nucleus, 
is small and comparable to the contribution of the corrections given by the parameters of the 
curvature [primarily of the corrections in (37) which are themselves proportional to the 
charge of the nucleus]. Since the magnitude of these corrections increases with decreasing 
droplet size, this accounts for the experimentally observed [11] significant difference in 
the behavior of As v for small clusters from that predicted by Eq. (38). 
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MUTUAL POLARIZATION ON A DOUBLET OF PARTICLES WITH AN ARBITRARY 
ORIENTATION RELATIVE TO THE FIELD VECTOR 

V. R. Estrela-L'opis, F. D. Ovcharenko, UDC 541.182:537.226.83 
an V. V. Dudnik 

The problem of the mutual polarization of two spherical colloidal particles in an 
external electric field with an arbitrary orientation relative to the field vector 
has been considered in a general form. The mechanism of the polarization of the 
partial medium interface was not specified. The expression obtained permits the 
calculation of the binding energy of the particles in a doublet with any degree of 
accuracy with consideration of the multipole polarizabilities for arbitrary 
distances between the particles. 

The investigation of the process of the coagulation of colloidal particles in an elec
trolyte under the influence of an electric field requires the correct description of the 
energy of the polarization interaction at distances commensurate with the thickness of the 
double layers of the particles. At just these distances the polarization forces (in the case 
of identical particles, they are forces of attraction) compete with the ionic electrostatic 
forces of repulsion. Until recently calculations of the polarization interaction of charged 
colloidal particles at small distances (or the multipole interaction) were carried out on 
the basis of the diagrammatic analytical method developed in [1, 2] only for the case in 
which the line of the centers of the particles is parallel to the vector of the external 
field. In contrast to the traditional methods [3-6], this method made it possible to solve 
the problem of the multipole interaction for an extensive class of models of the polariza
tion of a particle—medium interface [1, 7, 8]. 

However, in real systems the particles are distributed arbitrarily relative to the field 
vector; therefore, the further generalization of the diagrammatic analytical method requires 
the solution of the analogous problem for just this case. This will make it possible to ob
tain the correct expression for the total energy of the interaction of colloidal particles 
in an electric field, which is needed, on the one hand, for the development of a systematic 
theory for nonequilibrium electrical surface phenomena in concentrated suspensions and, on 
the other hand, for the development of such a theory for the kinetics of electrocoagulation 
[9, 10]. 

The series of studies in [11-14] on the theory of nonequilibrium electrical surface phe
nomena in concentrated suspensions was carried out on the basis of the cell model, which 
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