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Abstract

The condition has been formulated and the role of the surface forces at a solid-liquid
interface has been established for the barrierless heterogeneous formation of a droplet
on a macroscopic wettable insoluble solid nucleus in supersaturated vapour. The
threshold value of the vapour supersaturation starting from which heterogeneous
nucleation occurs as a barrierless process and all thermodynamic characteristics of
heterogeneous formation of a droplet which are necessary for kinetic description of phase
transition below the threshold have been found as a function of parameters of the
exponential and the power-law approximations to the work of wetting of the nucleus
associated with the surface forces and size of condensation nuclei: the coordinates and
the half-widths of the potential hump and the potential well in the curve of the work of
heterogeneous formation of a droplet; the activation barrier which droplets have to
overcome by fluctuations in the process of formation of the stable phase.
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Introduction: historical background

Realization of the homogeneous mechanism of phase transition usu-
ally requires such high supersaturations of an initial metastable phase
that the mechanism is hardly encountered in nature. More readily
realized is the heterogeneous mechanism of phase transition on foreign
particles that are practically always present in the initial metastable
phase, even if only in small numbers, and can serve as nucleating
centres of a stable phase.

The idea about the predominance of heterogeneous nucleation over
homogeneous nucleation was introduced by Volmer. He was the first to
substantiate this predominance in the case of heterogeneous nucleation
on ions and in the case of condensation on macroscopic boundaries of
metastable phase both from thermodynamic and kinetic points of view
[1]. The case of wettable solid nucleus completely covered by thick liquid
film was considered first by Krastanov [2].

It is recognized in the present state of the art that the advantage of
the heterogeneous mechanism of phase transition over the homogene-
ous mechanism is determined by the gain in the energy of formation of
a stable phase embryo. This gain in the energy is associated with surface
forces at interfaces.

The role of surface forces is especially complex in heterogeneous
phase transitions, and so this role has been little studied theoretically
until now even in the most typical case of vapour nucleation on solid
nuclei. The reason why surface forces can provide the possibility of
intensive heterogeneous condensation on solid insoluble nuclei at low
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supersaturations of vapour has itself been unclear. It is usually as-
sumed, following Krastanov [2], that the heterogeneous formation of a
stable phase embryo requires smaller work in comparison with the
homogeneous formation, i.e. is more favourable energetically, if the
work of transfer of a heterogeneous nucleus from the metastable phase
into the stable phase is negative. Even though this condition, as we will
see later, indeed is necessary, it is not sufficient to explain the essential
predominance of heterogeneous nucleation over homogeneous nuclea-
tion. The number of foreign particles present in the metastable phase
and serving as the centres for heterogeneous formation of the stable
phase 1s, as a rule, smaller by many orders than the number of metas-
table phase molecules serving as the centres of homogeneous nucleation.
In order that heterogeneous phase transition might nevertheless occur
sufficiently intensively, the energetic advantage of the heterogeneous
mechanism over the homogeneous should be extremely high. This
happens practically in the situation when heterogeneous nucleation
proceeds as a barrierless or near-barrierless process.

Revealing the ability of such a situation and consideration of its
association with the surface forces at interfaces will be the principal goal
of the investigation presented below.

Being interested in the principal side of the problem, we will suppose
for certainty that the initial metastable phase is a supersaturated
vapour and the final stable phase is a liquid. We will refer to this liquid
as a condensate. The nucleus in a stable phase embryo will be assumed
wettable and enveloped by the film of condensate uniformly from all
sides. In this way, we exclude from consideration the mechanism of
heterogeneous phase transition through the formation of separate drop-
let caps with a finite contact angle on the nucleus surface [3,4]. The
mechanism of creation of a continuous wetting film of condensate [5,6]
and the question about the role of inhomogeneity of the nucleus surface
[7,8] are also beyond the scope of the investigation.

Explanation of the origin of the energetic advantage of the heteroge-
neous mechanism of phase transition over the homogeneous mechanism
will be given in the investigation on the basis of the idea about overlap-
ping of the surface layers of condensate film between the nucleus of
condensation and vapour. The overlapping of the surface layers is
provided by the long-range character of surface forces at the interface
between nucleus and condensate, and it will be taken into account in
the investigation through the difference of the work of wetting of a
nucleus by the condensate film in comparison with wetting by the liquid
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bulk phase. As we will see below, just this overlapping of surface layers,
which is typical for thin condensate films, affords a possibility of barri-
erless nucleation on wettable nuclei. This possibility was excluded in
the approximation of thick film used by Krastanov [2].

The effect of overlapping surface layers of the liquid film between the
nucleus and the vapour was discussed first in the thermodynamics of
heterogeneous nucleation by Shcherbakov [9] and by Shcherbakov and
Tereshin [10,11]. They announced that the expression for the work of
droplet formation on a wettable nucleus should include an additional term
which accounted for the van der Waals forces between nucleus and
condensate. This term displayed a power-law dependence on the thickness
of the droplet liquid film and could not be reduced to “volume” and “surface”
terms present in the case of a thick liquid film on the nucleus. However,
an activation barrier of nucleation and the preexponential factor in
equilibrium distribution of sizes for heterogeneously nucleated droplets
were defined incorrectly in Refs. [9—11]. As a result, the statement that
the activation barrier for heterogeneous nucleation vanishes when the
work of formation of the critical embryo goes to zero was in error.

Further, the contributions to the chemical potential of the spherical
film of condensate due to the van der Waals forces between the solid
nucleus and the vapour were calculated by Belosludov and Nabutovski
[12,13] by means of a study of the fluctuating electromagnetic field in
the systems with spherical interfaces. These contributions gave in an
explicit form the molecular constituent of the overlapping of the surface
layers of the condensate film between the nucleus and vapour. In
distinction to preceding authors [2,9-11], Belosludov and Nabutovski
correctly defined the activation barrier of heterogeneous nucleation on
wettable insoluble particles as the difference in the values of the work of
formation for critical and equilibrium droplets. They showed that the
threshold for barrierless nucleation, i.e. the vapour supersaturation at
which the activation barrier of nucleation goes to zero, could exist in the
case when the condensation nuclei had greater optical density than the
film of condensate. Structural surface forces were not considered in Refs.
[12,13].

The competition between surface forces and curvature to determining
the thickness of wetting layers, and the resulting wetting phase dia-
gram, have also been studied from the point of view of the statistical
mechanics of surface phase transitions by Upton et al. [14].

Structural surface forces in the thermodynamics of vapour nucleation
on macroscopic solid nuclei were first accounted for by Rusanov and
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Kuni [15,16]. They showed the possibility of barrierless heterogeneous
nucleation in the presence of structural forces and found the dependence
of vapour supersaturation at the threshold of barrierless heterogeneous
nucleation on the characteristics of the forces and on the size of the
condensation nuclei.

The specific distinctions of the kinetics of overcoming the activation
barrier for nucleation on insoluble nuclei in comparison with the kinet-
ics of homogeneous nucleation have not been discussed in the literature
previously. But it is just the kinetics that make a link between theory
and experiment. As follows from previously obtained thermodynamic
results [15,16], if the energetic advantage of heterogeneous nucleation
over homogeneous nucleation is to be realized at low supersaturations
of vapour, the nuclei of condensation must be macroscopic (though their
radii may be rather small say, a fraction of a micron). As we will see
below, the macroscopic size of nuclei makes the activation barrier of
nucleation, as well as the nucleation rate, very sensitive to vapour
supersaturation. It will bring an essential simplification permitting
formulation of the theory in an analytical form.

In Part I we will consider the principles of thermodynamics of
heterogeneous nucleation on wettable macroscopic insoluble nuclei and
establish the relation between the thermodynamic and kinetic theories.
In Part IT we will study the role of both structural and molecular surface
forces and formulate the condition for barrierless heterogeneous forma-
tion of a droplet around a wettable macroscopic insoluble nucleus of
condensation in supersaturated vapour. Determining all thermody-
namic quantities which are necessary for the kinetic description of a
phase transition, as functions of surface force characteristics and size
of the condensation nucleus, the theory will give in this way an answer
to all questions raised by experiment.

I. Thermodynamic principles of heterogeneous nucleation on
wettable nuclei

1. Chemical potential of condensate in a droplet

Consider a droplet of condensate (phase a) of radius R containing at
the centre an insoluble, incompressible, and wettable nucleus (phase )
with a given radius R, (Fig. 1). From the outside, the droplet is sur-
rounded by vapour (phase () of the condensate. The temperature of the
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Fig. 1. Liquid drop on a solid wettable condensation nucleus.

droplet is assumed to coincide with the temperature T of the surround-
ing vapour. The validity of the assumption about the droplet thermali-
zation is provided by passive gas-carrier which practically always is
present outside the droplet in large amount (in comparison with vapour)
and has little ability to exchange molecules with the droplet. The droplet
and the vapour-gas surrounding are in mechanical equilibrium, but
chemical (diffusion) equilibrium is not necessarily achieved.

Let v denote the number of molecules which would be in the droplet
if it were completely liquid without any nucleus:

B 4nR3
3u¢

Y (1.1)

Here v is the volume per molecule in the condensate (the condensate
is supposed to be incompressible). We will denote by v,, the number of
molecules of the condensate which might be contained inside the volume
of the nucleus:

4nR3

v
T3u®

(1.2)

Naturally, R,/R < 1. According to Egs. (1) and (2), the inequality (v,,/ V)13
< 1 alsoholds with the same accuracy. It is evident that v —v,, represents
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the actual number of molecules of condensate in the droplet. One may
say that v and v, represent the volumes of the droplet and the nucleus
in units of v*. We will use the quantity v together with R as a variable
of droplet state.

Denote by [, the chemical potential of condensate in the droplet. Let
us introduce a dimensionless chemical potential of condensate contained
in the droplet: b, = (u, — p_)/kT. We express the chemical potential b, in
the thermal energy units 2T, where k is Boltzmann’s constant, and
measure it from the value p_/kT corresponding to the condensate—va-
pour equilibrium with a plane interface.

Choosing v as a variable of droplet state, let us discuss the depend-
ence of b, on v. It includes, for every value of v, a positive contribution
due to capillary pressure of the curved droplet surface. This contribution
for droplets of macroscopic size has, with account taken of Eq. (1.1), the
form (2/3)av™"3, where

ay (300
ny [ 3v
_ u” 1.3
¢ kT[éan (1.3)

and where v is the mechanically determined surface tension of the
condensate—vapour interface. Since y= const for droplet of large size, the
contribution to the chemical potential b, due to capillary pressure
decreases monotonously with increase of v. This contribution is leading
in the case of homogeneous nucleation.

The presence of an additional contribution in the expression for the
chemical potential b, which counteracts the capillary pressure, is a
specific feature and even an indication of heterogeneous nucleation.
Denoting this contribution by B,, we have

ngav%+m (1.4)

The contribution B, is opposite in sign to the contribution of the
capillary pressure and grows in absolute value relatively faster with
decreasing droplet size. The specific form of this counterpart and its
association with surface forces for condensation nuclei of various kinds
will be clarified in Section II. Here we need only state the fact that
competition between the contributions {3, and (2/3)av™*s leads to the
appearance of a maximum in the curve of the dependence of condensate
chemical potential b, on v for heterogeneously nucleated droplets.
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Fig. 2. Dependence on v of the chemical potential b, of condensate in a droplet.

A typical plot for dependence of b, on v is presented on Fig. 2. The
solid curve shows the behaviour of , in heterogeneous nucleation. The
broken line represents the contribution to b, of capillary pressure. The
corresponding curve would represent 4, in homogeneous nucleation. As
we see, the chemical potential of the condensate reaches its maximum
at v =v,. We will denote further by subscript 0 the values of quantities
at the extreme points of b,. It is obvious in the case considered that

@b, / V)y=0 (15)
(3°b, / V¥, <0 (1.6)
(see Fig. 2).

Denote by pP the chemical potential of vapour. Let us introduce the
dimensionless chemical potential of vapour

b=P-p)/ kT (1.7)

If the vapour may be considered as an ideal gas, the chemical
potential b is related to the vapour supersaturation {=(p —p_)p.. (p is
the vapour pressure) as

b=In(1+¢) (1.8)
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For b < (b,), the heterogeneously nucleated droplet can be in stable
(equilibrium droplet) and unstable (critical droplet) equilibrium with
vapour. We will use subscripts e and ¢ to identify variables referring to
equilibrium and critical droplets. We have

b)), =b, (b)), =b (1.9
(db, / v),>0, (b, / dv), <0 (1.10)
(see Fig. 2).

Critical and equilibrium droplets coincide, v, = v,, when the vapour
chemical potential approaches the value

by, = max(b,) = (b)), (1.11)

For & > b,,,, equilibrium and critical droplets are absent entirely. Only
an equilibrium droplet exists at & < 0. This allows us to conclude that
Eq. (1.11) determines the threshold value b,, for the vapour chemical
potential b, that is expressed (as b,) in units of the thermal energy 2T
and measured from y_/kT. For & > b,;, nucleation of a droplet around
the condensation nucleus proceeds barrierlessly.

For b > b,,, all the thermodynamic information important for kinetics
and experiment consists of value b,,. Therefore, finding b, as a function
of the size of “dry” condensation nuclei and physical and chemical
parameters of nuclei and condensate becomes the actual problem. This
problem for macroscopic wettable uncharged and insoluble condensa-
tion nuclei will be solved in Section II.

The subthreshold region of values of vapour chemical potential 0 < b
< b,;,, where heterogeneous nucleation proceeds with a barrier, turns out
to be nontrivial for the kinetics and for experiment. We will return to
analysis of this region in the next section.

Note in conclusion of this section, that the threshold value &, of
vapour chemical potential is limited from below. This limit has a
thermodynamic origin. We neglected the pressure of the surrounding
vapour—gas in comparison with the capillary pressure in the droplet
when we considered contributions to the chemical potential of the
condensate. Meanwhile, the capillary pressure can be comparable with
and even smaller than the surrounding pressure for drops of large size
in surroundings enriched by a passive gas. Taking pressure of the
surroundings into account, we find an additional term U“(ng +nP—-nb)
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in the expression for the chemical potential &, of the condensate, where
Ng, nP and nP are the densities of the numbers of molecules of the passive
gas, the vapour that is present and the saturated vapour above the plane
surface of the condensate, respectively. The same term, in view of its
independence of v, will be in the threshold value &,, of the vapour
chemical potential. As a result, the value &,;, increases by a term Vo7,
if we recognize that n, >> nB — nB for surroundings enriched by passive
gas. Therefore, if the threshold value 4,,, which does not take into
account the pressure of the surroundings, can approach very small
values in its dependence on the parameters of nucleus and condensate,
then the term Vo7, will limit the smallest threshold value of the vapour
chemical potential.

2. The work of droplet formation

In modern thermodynamics, the work of transfer from the initial
state 1 to the final state 2 is usually found as the difference of an
appropriate thermodynamic potential for the above two states. The
choice of potential depends on the external conditions. If the formation
of a droplet proceeds, e.g., at fixed temperature, volume of the system,
and amounts of all components, the work W of heterogeneous droplet
formation is the difference in free energy @ for the system in the final
and the initial states:

For our purposes, it will be convenient to express the work W also
through the grand thermodynamic potential 2 which is related to the
free energy by the identity ® = > u.N; + Q, where 1, and N; are the
chemical potential and number of molecules of component i of the fluid

part of the system. Putting this identity into Eq. (2.1) yields
W= 2(lig — My Ny + Qg — Q (2.1a)

In the initial state, the system includes only the nucleus (phase v),
vapour and passive gas (phase ), so that

Q=Q(+Qb+Q¥

where here and below single superscripts denote bulk phases and double
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superscripts denote corresponding interfaces; surface excess quantities
are barred. The final stage includes, in addition, a liquid film of conden-
sate (phase o) between phases v and B which, generally speaking, need
not be equilibrated with the surrounding vapour (the film and the
vapour may have different chemical potentials):

Q=08+ QB+ Q)+ QB 4+ QW

Putting now the above expressions for Q; and €, into Eq. (2.1a) and
recruiting notation introduced in the previous section, one can write Eq.
(2.1) in the form

W=(v-v,) W, -ub)+QB 4+ Qri b +Qf p() = O p(u? (2.2)

It is implied in Eq. (2.2) that the chemical potentials, as well as the
pressure, of the vapour and passive gas-carrier stay practically fixed
during the process of droplet formation. This is fulfilled well for a
sufficiently large system. The quantity Qf (1) in Eq. (2.2) stands for
grand thermodynamic potential which we will refer to as the bulk part
of the film of condensate. If the surface layers of the film do not affect
each other, then Q% p(it,) coincides with the grand thermodynamic
potential of the condensate having chemical potential y, and contained
between spherical surfaces with radii R, and R. Both with the interfer-
ence of surface layers and without it, the sum Q® + QY + Q% (1)
describes the whole grand thermodynamic potential of the condensate
film. Considering the excess grand thermodynamic potentials QY and
Q"B to be the same as in the case of interfaces between corresponding
phases of infinite extent, we will incorporate the whole effect of surface-
layer interference into quantity Q% p(1,). The quantity QP (uP) in Eq.
(2.2) stands for the grand thermodgrnamic potential of vapour (having
chemical potential puf) and passive gas which are contained between
spherical surfaces with radii R, and R.

Let the droplet radius R and nucleus radius R, coincide with the radii
of the corresponding equimolecular surfaces of the droplet with respect
to the condensate. Then, in the approximation of incompressible con-
densate in the film, we have

QO r(y) = Qf gl = (V= Vv,) (1, — 1) (2.3)

Considering the vapour and passive gas as a mixture of ideal gases, we
may write the grand thermodynamic potential Q% R(uﬁ) in the form
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O puP) = Of pi) ~ VR g GRT (2.4)

where VB 1 is the number of vapour molecules per unit volume of the
spherical layer between radii R, and R at uP = . Evidently, the follow-
ing strong inequality is fulfilled:

SVER<<V-V, (2.5)

Let us introduce thermodynamically defined surface tensions ¢,
6", and o™ for the interfaces liquid—gas, nucleus—liquid and nucleus—
gas by the relationships

c®B=Q™®/ 4rR? (2.6)
o™ = QY / 4nR2 (2.7)
oB=QW / 4nR? (2.8)

If the nucleus carries an electric charge, then the thermodynamically
defined surface tensions 6%, 6 and o do not coincide with the
mechanically defined surface tensions for the corresponding interfaces
[17,18]. Considering henceforth uncharged nuclei of macroscopic size
and, accordingly, macroscopic droplets, we will assume

cP=c®B=y o®=zol oPzof (2.9)
The quantity

O pk) = Of plk) + Q% - QF
! kT

(2.10)

represents the work of wetting of a nucleus by a film of condensate
bounded by spherical surfaces with radii R, and R. This work is
expressed in units of the thermal energy £7. Both the film and vapour
quantities are taken in Eq. (2.10) at the same value of the chemical
potential, u = u... Further we will refer to the work f as the work of
wetting of a nucleus in a droplet.
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The quantity fdepends on the character of the surface forces at the
interface between the nucleus and condensate in the droplet and on
the thickness of the condensate film. If the nucleus of condensation is
absent and R, = 0 or if the nucleus consists of the same condensate, then
the pressures in the liquid and gas phases are equal, and we have
QR R(um) = Q% gr(H..). If the nucleus is absent, then ¢™ = o® =0 and, as
is seen from Egs. (2.7)~(2.10), f = 0. If the nucleus is a droplet of
condensate of radius K, then ¢ =0, o® = 0 and, as follows from Egs.
(2.1—~(2.10), f = ~4nR2y/kT.

It is convenient to use the work of droplet formation F expressed in
units of the thermal energy k7, instead of W:

F=W/kT (2.11)

Recognizing Egs. (2.3)—(2.11), Egs. (1.1)—(1.3), and Eq. (1.7), we find
from Eq. (2.2)

F=av” -b(v-v)+f (2.12)

In the presence of thermal and mechanical equilibrium of the droplet
with the surrounding vapour—gas, we have the differential thermody-
namic relation [19]

dF | dv=b,-b (2.13)

which takes into account the fact that the amount of matter in the
nucleus of the droplet remains unchanged and the droplet does not
exchange molecules with the passive gas. The relation is equivalent to
the condition of aggregation equilibrium in the vapour and is satisfied
at every value of the vapour chemical potential & (either positive for
supersaturated vapour, or negative for undersaturated vapour).

Using Eq. (2.13) and taking into account successively Egs. (1.9),
(1.10), and (1.5), we obtain

(0F /9v),=0, (0F /9v),=0 (2.14)
(0%F /0v?), >0, (3°F /dv?),<0 (2.15)
(0%F /av?)y=0 (2.16)

Thus, at the points v=v,, v=v, and v = v, the work F as a function of v
has a minimum, a maximum, and a point of inflection, respectively.
The dependence of F on v that follows from Eq. (2.13) and Fig. 2 (and
is in agreement with Eqs. (2.14)—(2.16)) is shown in Fig. 3. We have
taken into account the fact that F'| vey, = 0 the nucleus of condensation
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AF

Fig. 3. Dependence on v of the work F of heterogeneous droplet formation at 0 <5 < b,,.

is originally present in the vapour—gas medium, and therefore no work
is required for its formation. As a consequence, F, < 0 . As is seen from
Fig. 2, with decreasing vapour supersaturation down from the threshold
value b,;, the points v=v, and v = v, move away to the left and right
of the point v = v,;, which does not depend on vapour supersaturation.
At the same time, the minimum F, and maximum F, of the work F', which
have merged at b = b, at the point of inflection v = v,, increase. There
comes a moment, at some value of the vapour supersaturation, at which
the inequality F, < 0 (its validity is assumed in Fig. 3) is violated.
However, the inequality F, < 0 always remains valid. Among other
things, this inequality implies F'|}Z}» < 0.

Ifb > b,;,, then the work F, accordilhg to Eq. (2.13) and the condition
F|,., =0, decreases monotonously, starting from zero at the pointv=v,,
with increasing v within the entire physical range v > 0. Just this shows
that the heterogeneous phase transition certainly proceeds in a barri-
erless way at b > b,,. The fact that at b = b, the derivative dF /9dv goes
to zero at the single point v = v, of the maximum of b,, does not affect
the conclusion.

Taking the derivative of F with respect to v, with account of Eq. (2.12),
substituting the result into the left-hand side of Eq. (2.13), and compar-
ing it with Eq. (1.4), we conclude

o /v =, 2.17)
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It is obvious from Eq. (2.17), that only a v-dependent contribution to
the work of wetting of the nucleus in the droplet can provide the specific
features of heterogeneous nucleation, and, in particular, the existence
of the point of inflection, v = v,, and the inequality F| =, < 0.

3. Thermodynamic characteristics of nucleation in subthreshold and
prethreshold region of vapour metastable state

Let us return to the study of the subthreshold region of the vapour
metastable state, 0 <b < b,;, that we started in Section 1. We write the
vapour chemical potential in the form

b=b,(1-¢) (3.1)

where ¢ is the relative deviation of b below &,;,. Our immediate program
will be to find all the thermodynamic characteristics that are important
for the kinetics of heterogeneous nucleation and are exhibited in experi-
ment as functions of € in the subthreshold region where 0 < ¢ < 1.

Expanding b, in a Taylor series in the neighbourhood of the point v
=v,, and using Egs. (1.5), (1.6), and (1.11), we obtain

1]0%

v:bth—E

A%

W (v - VO)2 (3.2)

0

It is obvious that the parabolic approximation is valid if the neglected
term with the third derivative of b, with respect to v at the point v =v,
is small with respect to the retained term with the second derivative of
b, with respect to v at the same point. This requires

| (v = vg) @B, 70v3),|
| v = Vol V2 v )O| << 1 (3.3)
| @%b, VD), |

1
3
Using Egs. (3.2), (1.9), and (3.1), we find

(4

l/2
V, = Vo - (ZEbth /‘8217V /9v? ‘0)

1,
V.=vg+ (2£bth / ‘E)va / ov? ‘0) ’ (3.4)
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Fulfilment of Eq. (3.3) for v = v, and v = v, presupposes, as is clear
from Eq. (3.4),

%

2%b,

s

9%,

ov?

<<1 3.5)

1
g (ngth) 1/2

0 0

We will continue to keep Egs. (3.3) and (3.5) in mind, as the conditions
for the validity of the theory.
From Egs. (3.2) and (2.13), taking into account Eq. (3.1), we have

o [ 1
av 1T 2p,

The approximation, Eq. (3.6), is justified within the whole region
where Eq. (3.3) holds. If Eq. (3.5) is valid, the interval v, < v < v, falls
into this region.

Characteristic of nucleation important in the kinetics is the activa-
tion energy

AF=F.-F, (3.7)

3%,

ov?

(v - VO)Z:I (3.6)
0

— the difference between the ordinates of the potential hump and the
potential well in the work of droplet formation (see Fig. 3). Integrating
Eq. (3.6) with respect to v from v, to v, and taking into account Eq. (3.4),
we obtain

4 2 7
AF=Z¢%ph|—=2 3.8)
3 ”l{|a2bv /8v2|0} (

Recognizing Eqgs. (2.14) and (2.15), we write the following approxi-
mations

~2

r(v—ve)
F=F,6+ T (|v-v,| £Av,) (3.9)
12
r(v—vC)
F=F, - Av, (|v-v,| £Av) (3.10)
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where

Yy
2

T 11
(0°F /0v?), .11

2 "
Av,=|——=—1| |  Av,=
Yo [(82F /av2)J Y

Obviously, Av, and Av, are the “half-widths” of the potential well and
the potential hump in the work F. The work F becomes larger by 2T
than the minimal work ¥, at |v - v,| = Av, and smaller by 27 than the
maximal work F, at |v -v,| = Av,. Subcritical droplets gather at the
bottom of the potential well in F, approximately inside half-width Av,,
before, by fluctuation, overcoming the potential hump in F with half-
width Av,. The smaller Av, and Av,, i.e. the narrower the well and the
hump in F, the more readily does the heterogeneous phase transition
proceed. We will call near-equilibrium and near-critical the droplets for
which the variable v lies in the neighbourhoods |v-v,| <Av, and
|v-v,.| £Av, of the points v=v, and v = v, respectively.

The condition of smallness of the terms omitted in Eqgs. (3.9) and
(3.10), with the third derivative of F with respect to v at the points v =
v, and v = v, relative to the terms retained in Eqgs. (3.9) and (3.10), with
the second derivative of F with respect to v at the points v=v, and v =
V., is, as is clear from Eq. (3.6), given by the inequalities

Av, Av,
—— << 1l, ——<«1 (3.12)
3(vg = V,) 3(V, = vgp)

They also reflect the condition that the heterogeneous phase transition
proceeds subject to a barrier (ie., that the potential well and the potential
hump in the work F are fully manifested). The justification of the
inequalities present in Eq. (3.12) will be given below.

Using Eqs. (3.6) and (3.11), and taking into account Eq. (3.4), we
obtain

2 N
Av, = Av, = [ ] (3.13)

gby,, | 9%, 10V?|,
It follows from Eqgs. (3.11), (3.8), and (3.13) that

Av, Av, 2

= = 3.14
Vo= Ve Vo= Vg (3AF)1/2 ( )
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Note the universality of the last relation which allows us to rewrite
Eq. (3.12), the condition that the heterogeneous phase transition be
characterized by a barrier, in the form of a restriction on the value of
the activation energy AF' from below

(AR >> 2/ 3% (3.15)

The intensity of heterogeneous nucleation of supercritical droplets
which grow without limit depends on AF through exp(-AF). For practi-
cally any concentration of condensation nuclei in the surrounding va-
pour—gas, the only part of the entire subthreshold region of the vapour
metastable state that will be of interest for the theory is in fact

3<AF <30 (3.16)

Indeed, for AF > 30, the exponential exp(-AF) is so small that heteroge-
neous nucleation hardly takes place at all. For AF' < 3, the inequality in
Eq. (3.15) is violated, and the exponential exp(-AF) will no longer be
small. The heterogeneous nucleation then takes place practically in the
barrierless regime, and this so greatly simplifies the kinetics of hetero-
geneous phase transition that, among all the thermodynamic relations
obtained above, all that remains important for the kinetics is (as in the
region b > b,;,) just the value b,;.

We will call the region of vapour metastable state in which Eq. (3.16)
holds the “prethreshold region”. Further, when we will consider specific
condensation nuclei, we will demand that Eq. (3.5) be fulfilled for every
¢ that, through Eqgs. (3.8) and (3.16), belong to the prethreshold region
of the vapour metastable state. Obviously, this will give some restric-
tions on the accessible values of parameters of the condensation nuclei
determining vy, b,y, (02b,/dv2), (33b,/0v3),. As we will see in a subsequent
section, for macroscopic condensation nuclei in the subthreshold region
0 < ¢ < 1 the prethreshold region occupies only a very narrow gap with
width of the order of the distance of the gap from the upper limit of the
subthreshold region.

If Eq. (3.5) is satisfied in the prethreshold region, then the inequalities

Av v, << 1, Av v, << 1 (3.17)

hold in the prethreshold region even more strongly than the inequalities
in Eq. (3.12). Equation (3.17) justifies Eq. (3.6) not only within the
interval v, <v <v_but also within the interval v, - Av, <v<v_ + Av.. The
validity of Eq. (3.17) itself will be proved in a subsequent section when
we will consider particular approximations for the dependence of the
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chemical potential of condensate in the droplet, b,, on v.
If AF satisfies Eq. (3.16), the right-hand side of Eq. (3.14) is bounded
from below by the value 2/(90)12. This means

Av, >> 1, Av,>>1 (3.18)

for droplets with v >> 1 and, consequently, with vy~ v, >> 1 and v, - v,
>> 1. The inequalities are important, in particular, because they show [21]
that the variable v (which is essentially discrete) can be justifiably regarded
as continuous within the potential well and the potential hump in F.

4. Relation between thermodynamic and kinetic theories of nucleation

The kinetics of nucleation plays the linking role between thermody-
namics of nucleation and experiment. According to the results of the
preceding section, the kinetics of heterogeneous nucleation is of the most
interest in the prethreshold region of the vapour metastable state in
which the kinetics opens up the possibility of external control of the
development of the phase transition in time and the possibility of
maximal retrieval of inverse information about molecular properties of
the condensate from experimental data.

When discussing the kinetics of heterogeneous nucleation, we will
bear in mind the first stage of the phase transition in supersaturated
vapour, the stage of effective nucleation of droplets. Development of
subsequent stages of nucleation in their dependence on regularities of
the first stage and also on external conditions of creation of the vapour
metastable state and on the change in time of the vapour concentration
of condensation nuclei was investigated in general earlier in Refs.
[22,23].

The general character of the approach presented below is provided
by the fundamental thermodynamic starting points used to describe
heterogeneous nucleation: the threshold value of the vapour chemical
potential, the locations and halfwidths of the potential well and the
potential hump in the work of heterogeneous droplet formation, and the
activation energy.

To construct a kinetic equation governing the process by which
fluctuations allow near-critical embryos to overcome the activation
barrier, we need to know, first, their equilibrium distribution and,
second, the rate of change in time of the variable that describes them.

We denote by n®)(v) the equilibrium distribution of droplets as a
function of the variable v, referred to unit volume of vapour. For
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simplicity, we shall assume that the condensation nuclei are all identi-
cal. We denote their number in unit volume of the vapour by n,.

Because the work F, is negative and is large in absolute magnitude
in the prethreshold region of the vapour metastable state (large as
compared with the thermal energy £T), practically each of the conden-
sation nuclei captures such a number of vapour molecules for which the
newly formed droplet is at the bottom of the potential well in the work
F. As a result, an equilibrium distribution of the heterogeneously
nucleating droplets will also be formed.

Recognizing that the equilibrium distribution has the form of a Gibbs
distribution, we then obtain

1/2
e

n® (v) = —2— exp [~(F - F,)] (4.1)
Tt Ay

To prove the correctness of the normalization factor in this distribution,
we integrate it over the near-equilibrium neighbourhood |v - v, | < Av,
where it is mainly concentrated. Using Eq. (3.9), we conclude that the
integral is, as it must be, equal to n,,.

The idea, expressed by Egs. (4.1) and (3.9), that heterogeneously
produced droplets accumulate at the bottom of the potential well in the
work of droplet formation before they overcome the activation barrier
in a fluctuation process was used earlier [20] in the theory of ion-induced
nucleation in a metastable vapour.

In the near-critical neighbourhood |v -V, | < Av, of the point v = v, of
the maximum of the work of droplet formation, which is important for
kinetics, the work F can be written in the form of Eq. (3.10). In this
neighbourhood, in which the equilibrium distribution is small and has
a purely formal meaning, we obtain from Eq. (4.1), taking into account
Egs. (3.10) and (3.7),

2

n, V-V
n v = T2, exp (-AF) exp H ] } (Jv=-v,| £Av) (4.2)

v, Av,

The fact that F, and F, have appeared in Eq. (4.2) in the form of the
difference F, — F, shows why it was sufficient to start from the differential
(and not finite-difference) relation in Eq. (2.13), which determines the
work F only up to a constant term.

Let us now turn to the finding of the rate of change v with respect to
the time in a near critical droplet. Considering the vapour as an ideal
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gas, we relate the chemical potential 4 of the vapour, which is present
in the system, and the chemical potential b, of the imaginary vapour
which is in equilibrium with a droplet consisting of v molecules of
condensate at temperature 7, to the vapour density,

nb=nk exp(b), ne =nP exp(b,) (4.3)

To describe free-molecule material exchange between droplet and va-
pour, we will use the well-known Knudsen formula,

v=w(l-nb/ nb) (4.4)
where
w = o venPR? (4.5)

with o, the sticking coefficient for vapour molecules and vy the mean
thermal velocity of vapour molecules. The assumption that the material
exchange between the droplet and the vapour is in the free-molecule
regime imposes an upper limit on F [24]. The limitation, however, as we
will see further, is so weak that it is practically always fulfilled in the
stage of the nucleation of supercritical droplets, even for condensation
nuclei of macroscopic size.
Using Egs. (4.3) and (2.13) in Eq. (4.4), we find

v =w[l - exp(0F / ov)] (4.6)

In accordance with Eq. (3.10) and with the second inequality from Eq.
(3.18), we have in the near-critical neighbourhood |v - v, | < Av, the
approximation |[0F/dv| << 1. Using it in Eq. (4.6), substituting Eq. (3.10)
and recognizing that, if Eq. (3.3) is fulfilled in the prethreshold region,
w can be replaced by its value w, at v = v, we obtain

(Jv=v.| £Av) (4.7)

The kinetic equation that governs the process by which near-critical
droplets overcome the activation barrier by fluctuation is the Fokker—
Planck equation linearized in the neighbourhood of the critical droplet
[25-27].

It has the form of the continuity equation

an(v,t)=-0,J (4.8)
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where ¢ is the time, n(v,t) is the distribution of droplets with respect to
the variable v that describes them, and j is the flux of the droplets. We
have used the abbreviated notation d, =d/dt and d, =d/dv for the operators
of differentiation with respect to ¢t and v. We assume below that n(v,z),
like the equilibrium distribution n‘®/(v), refers to unit volume of the
vapour-passive gas system.

In accordance with the general principles of physical kinetics,

J=(+00,) n(v,) (4.9)

The term with the operator d, describes the fluctuation development
of droplets. This is superimposed on the regular development of an
individual droplet described by the term with v. The unknown coefficient
o of the term with the operator 9, is determined from the condition of
vanishing of the flux of droplets when they have their equilibrium
distribution.

Taking into account Eqgs. (4.2) and (4.7) in Eq. (4.9), we then obtain

. V VC
j==wo| 8, =27 | n(v) (4.10)

Substituting Eq. (4.10) into Eq. (4.8), we finally arrive at

V-V,
dn(v,t) = wyo, [av -2 A )2} n(v,t) (4.11)

c

The operator d, acts on all factors to the right of it.

The kinetic equation, Eq. (4.11), is written in the same form as in the
classical theory of homogeneous nucleation [26,27]. However, the pa-
rameters v,, Av,, and w, turn out to be essentially different from those
in the theory of homogeneous nucleation.

For the distribution n(v,t) we impose the natural boundary conditions
for kinetics of phase transitions [27,28]:

nwv,t) In®v)=1  (vzv,—Av)
nwv,t) In®v)=0  (vzv,+Av) (4.12)
Under these conditions, the equilibrium distribution n®(v) given by Eq.

(4.2) also differs essentially from the one in the classical theory of
nucleation.
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The second of the inequalities in Eq. (3.17) justifies the neglect in Eq.
(4.11) of the derivatives of n(v,t) with respect to v of higher than second
order, i.e. it justifies the validity of the Fokker-Planck approximation
in this equation. Indeed, the second inequality shows that the change
of variable v in an individual event in which the droplet captures or
emits a vapour molecule (the change is equal to 1 or —-1) is small
compared with the half-width Av, of the potential hump in the work F,
which specifies the scale of the variation of the distribution n(v,¢) with
variation of v.

The linearization of the kinetic equation, Eq. (4.11), in the neighbour-
hood of the critical droplet is due to the validity of the parabolic
approximation, Eq. (3.10), for the work of formation of the near-critical
droplet.

Let us now investigate the steady-state solution of Eq. (4.11). We
shall identify it by the index s.

In the steady state, the quantities do not depend on ¢, and the flux,
by virtue of Eq. (4.8), is also independent of v. In accordance with Egs.
(4.10), (4.12), and (4.2), we then have

o] (20
} dv’ exp L—[ Av., ] | (4.13)

2

—AF - V.
,ﬂx)(v)zw()expﬁv vtj

1/2
T “Av,Av, Av,

v
Substituting then Eq. (4.13) in Eq. (4.10), we obtain

(s) M AF') ( 4.1 4)
7 rav,av, P ( '

and this determines a quantity that is important for the kinetics, the
steady rate of heterogeneous nucleation of supercritical droplets which
then grow without limit. The factor wy/rAv,Av, in Eq. (4.14) is the
heterogeneous analog of the “Zeldovich factor”.

The work of heterogeneous formation of a droplet is represented in
the argument of the exponential in Eq. (4.14), as is seen from Eq. (3.7),
by the difference F, — F,. This confirms that the activation energy of
heterogeneous nucleation is determined by the sum of the height of the
potential hump and the depth of the potential well in the work of droplet
formation, and not only by the height of the potential hump as in the
case of homogeneous nucleation.
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Using the results obtained in Refs. [28,29] in the investigation of an
Equation of the form of Eq. (4.11) with the boundary conditions given
by Eq. (4.12), we could also describe analytically the process of the
establishment in time of a steady state of the near-critical droplets. In
particular, we have

Av )?
t, = (2wc) (4.15)
0

for the time ¢, of establishment of this state and, therefore, the estab-
lishment of a steady rate of nucleation.

The time ¢, can be observed in an experiment. It is called the
incubation time (or the time lag). When it has elapsed, supercritical
embryos of the stable phase begin to arise systematically in the metas-
table phase with a regular frequency, in number j® per unit time in unit
volume of the metastable phase.

It can be seen from Eqs. (4.14) and (4.15) with Av, = Av, (the equality
is fulfilled, according to Eq. (3.13), with high accuracy in the prethre-
shold region of the vapour metastable state) that the number of super-
critical droplets that arise in the steady regime during the time ¢,, in
unit volume of the vapour—gas system, is the fraction (1/n)exp(-AF) of
the number n, of condensation nuclei in the same volume. This fraction
1s completely negligible in the prethreshold region of the vapour metas-
table state where the activation energy AF is already substantial.

One can say that the time ¢, specifies the scale of the characteristic
time of development of the heterogeneous phase transition in the pre-
threshold region of the vapour metastable state. The work F of formation
of a droplet is represented in Eq. (4.15) for the time ¢, by the half-width
Av, of its potential hump.

If ¢, is small compared with the time during which there is a signifi-
cant change of the steady nucleation rate j*) when the values of b, n,,,
and T (and also the volume occupied by vapour and gas) vary in time,
then the steady state of the near-critical droplets will be maintained as
a quasisteady state, i.e. it will correspond to the instantaneous values
of these quantities.

In the laboratory experiment allowing instant generation of the
initial value of vapour supersaturation, it is hard to fit accurately into
the prethreshold region of the vapour metastable state if the thresh-
old value of vapour supersaturation is itself small. The supersatura-
tion generated may fit into the lower part of the superthreshold region
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at b > b,,. In accordance with this, we note that the time ¢, defined by
Eq. (4.15) specifies the scale of the characteristic time of development
of the heterogeneous phase transition not only in the prethreshold
region of the vapour metastable state, but also in the lower part of its
superthreshold region b > b,,. As follows from Eq. (3.1), £ < 0 in the
superthreshold region and |¢|'? satisfies Eq. (3.5), which can be reduced,
as was noted above, to the inequality |g|!/2 << 1.

Let us prove this. Equation (2.13), as well as Eq. (3.6), is not limited
by the case b < b, i.e. € > 0. As can be seen from Eqs. (3.6) and (4.6),
the inequality v > 0 always holds at € < 0. The positivity of velocity v of
regular change in time of the variable v at € < 0 allows one to neglect
the fluctuation contribution in the estimate of the rate of heterogeneous
growth of droplets and, consequently, to consider this growth as an
entirely determined (not stochastic) process with rate v. As follows from
Eq. (3.6) at € < 0, dF/dv is negative and grows in absolute value with
increasing |v - v,|. According to Eq. (4.6), rate v reaches its minimum
value (positive at € < 0) at the point v = v, and grows with increasing
Iv — vyl. The smaller |g|, the relatively faster is the growth of v. Due to
this fact we can estimate the characteristic time 1 of the development of
the heterogeneous phase transition at € < 0 and |g|? << 1 as

dv
v

—0

‘- (4.16)

where the main contribution to the integral comes from the region with
v << 1. This region coincides at |¢|'2 << 1 with the neighbourhood |v - v
< (2by, / |0%, / 0v*| ;)2 |g]2 of the point v = v, where, as follows from
Egs. (3.6) and (4.5), dF/dv << 1 and w = w,. Substituting Eq. (4.6) in Eq.
(4.16) and taking into account Eq. (3.6) and what was said above, we obtain

1/2
T~7 [ 2 j 1 (4.17)

|lbuy |9, JOv2|g | wy

Comparing the time t with the time ¢, recognizing Egs. (4.15) and (3.13)
and considering the value of |¢| in Eq. (4.17) to be the same as the value
of £ in Eq. (3.13), we have

vt ~ 1 (4.18)

Although Eq. (4.18) overestimates the real time of development of the
heterogeneous phase transition in the superthreshold region, b > b,,, of
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the vapour metastable state (neglected fluctuations accelerate this
development), Eq. (4.18) nevertheless shows that the time ¢, specifies
the characteristic time of development of the heterogeneous phase
transition even in the lower part of the superthreshold region of the
vapour metastable state.

Let us formulate the condition for validity of the assumption, adopted
in Eq. (4.4), about the free-molecule regime of material exchange be-
tween droplet and vapour. This condition can be reduced [24] to the form

Ry <<l /ac (4.19)

where [, is the mean free path for molecules of the surrounding
vapour—gas. Estimating /,, ~ (4m)**/(3v%)*3(n, + nP) and taking into
account the relation between R, and v, and the explicit relation for v,
we could rewrite Eq. (4.19) in the form of a limitation on the accessible
values of the initial parameters of the problem. Let us remember that
an additional limitation on the values of the parameters of the conden-
sation nuclei is imposed by Eq. (3.5).

II. Nucleation on macroscopic uncharged nuclei

5. The disjoining pressure of a condensing liquid film and the work of
wetting of a nucleus

The formation of the droplet around the wettable macroscopic nu-
cleus of condensation starts from the formation of a thin film of conden-
sate which we cannot describe thermodynamically with neglect of the
mutual interference of surface layers on opposite film sides. We shall
speak about the interference as overlapping of the droplet surface layers
between the condensation nucleus and the surrounding vapour—gas.

The effect of overlapping of the surface layers of the thin film can be
described in terms of the disjoining pressure. The disjoining pressure I'1
is defined as the difference between the normal component of pressure
inside the flat film, which is equal to the external pressure, and the
pressure in the bulk phase of the film matter at the same values of the
temperature and chemical potentials as in the film. For a one-compo-
nent liquid phase, its chemical potential u* at a given temperature is
determined solely by the pressure p® inside phase o

du* = v%dp* (5.1
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For a condensed phase v* = const, and integration of Eq. (5.1) with
respect to p® from the value p% which corresponds to the equilibrium of
phases o and 8 with a flat interface gives

u =, = v @* - pl) (5.2)

Since the external pressure on the film is equal to the pressure pP of
the surrounding vapour—gas, the chemical potential of the molecules in
the flat film, according to Eq. (5.2) and to the definition of I1, is

U = + 0P - I - p% (5.3)

In the case of a slightly curved thin film, the condition of mechanical
equilibrium of the film with the liquid phase can be written in the form

p =pP+2y/ R-TI (5.4)

(see, for instance, Refs. [30-32]) where the second term on the right-
hand side is the capillary pressure.
Substituting Eq. (5.4) in Eq. (5.2) yields

=y +0* P -pB +2y/ R-TD) (5.5)

where we have taken into account p%=p®. If the pressure in the
surroundings is held constant (during the condensation process it may
be provided, for example, by a passive carrier gas, as in the case of
condensation of water in the Earth’s atmosphere), then pP - p? = 0, and
we obtain from Eq. (5.5)

u*=pu, +v*%2y/ (R, +h) -TI) (5.6)
where
h=R-R, (5.7)

is the thickness of the liquid film.

Equation (5.6) relates the dependence of the chemical potential of the
condensate in the film on the thickness £ of the film to the isotherm IT(4)
of the disjoining pressure in the film. For stable films IT > 0 and the
disjoining pressure, as follows from Eq. (5.6), lowers the chemical
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potential, whereas the capillary pressure, on the contrary, raises it.
Thus we have the typical situation which was generally described in
Section 1. Evidently, the contribution B, that counteracts the contribu-
tion of the capillary pressure in Eq. (1.4) to the chemical potential of the
condensate in the droplet can be written as

B, = VoIl / ET (5.8)

According to Eq. (2.17), Eq. (5.8) establishes a relation between the
disjoining pressure IT and the work f of wetting of a nucleus. Since the
disjoining pressure is experimentally determined only for flat films and
Eq. (2.10) for the work f can be applied both for slightly and highly
curved films, then, with a given approximation for f, Eq. (2.17) allows
us to define the disjoining pressure for the curved film. Subsequent
sections will be based on approximations for the dependence of the work
of wetting of a nucleus on the thickness of the condensate film around
the nucleus. We will check the dependence in the limiting case of a flat
film by comparing it with experimental determinations of the depend-
ence of I1 on A.

Let us integrate Eq. (2.17) taking into account Eq. (2.12) and the
boundary condition, F'|,_, =0. Substituting Eq. (5.8)in Eq. (2.17), using
Egs. (1.1)~(1.3), and considering the disjoining pressure I1 to be known
for arbitrary thickness of the liquid film around the nucleus, we have

4nRZy
RT

R
4n 9
- -7 | drR - (5.9)

R

Setting T = 0 (i.e. assuming that the nucleus consists of matter which
is similar in its characteristics to the condensate), we find f = —Y4TER,2L/kT,
which coincides with the result obtained for the analogous case in
Section 2.

Let f. denote the value of the work of wetting of a nucleus in the
condensate of infinite extent (at R = o). It follows from Eq. (5.9) that

4nR%y

an | 9
F-= % J arre - KT

R

n

(5.10)

where the upper limit of the integral is taken to be « due to the rapid
decrease of I1 to zero with increasing thickness of the condensate film.
On the other hand, as R — « the quantity Q% g(1..) tends to Q8 p(i.).
In view of Eq. (2.10), and taking account of Egs. (2.7)-(2.9), we then have
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f. = (0X* - o) 4nR?2 (5.11)

which expresses Dupre’s rule (for the generalization of the rule and
associated rigorous relations see Ref. [33]).
Let us define

Ac = ol — o (5.12)

For the nucleus surface which is wettable by the condensate, Ac < 0,
while Ac > 0 for non-wettable surface. Comparing Eqgs. (5.10) and (5.11),
we see that the equality

—; | aRR =5 (5.13)
Rn
RII
should hold for the nucleation on wettable nuclei. The quantity
s=oP -l -y (5.14)

stands for the coefficient of spreading of the condensate over the flat
surface of the nucleus substance; more precisely, the initial value of this
coefficient, before the adsorption of vapour on the nucleus surface. As is
seen from Eq. (5.13) for wettable nuclei (for IT > 0), one should have

s>0 (5.15)

which is a more restrictive condition than Ac < 0. However, as we will
show in the next section, even this condition will not be sufficient for
barrierless heterogeneous nucleation.

Note that Eq. (5.15) does not hold for the equilibrium values of the
spreading coefficient. As was shown by Gibbs [34] (a detailed discussion
has been given by Rowlinson and Widom in Ref. [5]), even with complete
wetting of the nucleus the equilibrium value of s does not exceed zero.
This is due to the fact that the equilibrium value of the surface tension
of the yB interface is smaller than 8.

In the case of macroscopic condensation nuclei with a condensate
film, for which the maximal film thickness with IT # 0 is much smaller
than the nucleus radius R,, we can write instead of Eq. (5.13)

oo

| dhm=s (5.16)
0

with the thickness 4 defined according to Eq. (5.7).
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Let us consider now one more thermodynamic consequence of the
ideas presented in this section, concerning the reversal of phases at
nucleation.

Equation (5.13) should be correct independently of the specific choice
of phases o and B. If phases o and [ replace each other and a spherical
layer cavity filled with a vapour (phase ) forms around a solid particle
(phase 7v) inside the bulk of liquid (phase o), then, instead of Eq. (5.13),
we have

# J dRR?TIP = g — o — vy (5.17)
n R“
where we label IT with the superscript B to make a distinction with the
case of a liquid film. As follows from Egs. (5.14) and (5.15), the right-
hand side of Eq. (5.17) should be negative. Consequently, I1? < 0, and
the cavity is unstable. This means that cavitation in a liquid cannot be
stimulated by those solid particles which allow barrierless heterogene-
ous nucleation in the supersaturated vapour of the same liquid. So
cavitation should occur by the homogeneous mechanism in this case.
The same is true for the case of nucleation in systems with liquid—
liquid miscibility gap. Let us illustrate this by Fig. 4. The figure shows
the temperature—composition coexistence curve (the binodal) for the
equilibrium of two liquid phases, o and B, in a two-component liquid
mixture (the outer curve). The inner curve (the spinodal) is the bulk

T

X

Fig. 4. The binodal and the spinodal for the liquid-liquid system in the temperature—
composition plane. The vertical dashed lines correspond to supercoolings at fixed
composition.
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stability boundary separating metastable (shaded area) and unstable
regions in the phase diagram. Both the curves are known to be more
symmetrical the closer to the critical point.

The vertical dashed lines in the figure represent attempted super-
coolings at fixed composition — starting in the one-phase region and
lowering the temperature below that of the equilibrium phase separa-
tion and entering the metastable region where the fluid still remains
homogeneous. We can imagine particles of a third phase, vy, to be
immersed into those phases to see how such particles will stimulate the
nucleation process on either side of the critical point. If the interface v
is wetted by the phase o, and Eq. (5.13) holds, the system cannot be
deeply supercooled on the [3-phase side of the critical point, because
phase o will nucleate at small supercoolings practically without encoun-
tering the activation barrier. But, according to the discussion above, the
system can be supercooled on the a-phase side of the critical point, since
phase o will nucleate only homogeneously in this case.

A similar behaviour, but in the situation when phases o and 3 were
in contact with the container walls, was observed by Heady and Cahn
[35]. Thus, the known symmetry of the physical picture near the critical
point is remarkably disturbed in the phenomenon of nucleation due to
the influence of surface forces at a solid nucleus.

6. Exponential approximation to the work of wetting of a nucleus

Let us consider the exponential approximation to the work of wetting
of the nucleus in a droplet. One can relate the exponential character of
the work of wetting of the nucleus to the exponential character of
interactions which is very common in nature. Whatever the nature of
the interaction forces at large distances, there is a molecular correlation
effect that manifests itself at intermediate distances (usually in an
exponential form) and can be regarded as universal [36-39]. On the
other hand, for some liquids (and, first of all, for water) there are
manifested so-called structural forces, ie. the same correlation effects
but acting over the longest distances (i.e., characterized by largest
correlation length). Therefore

f=f{1l-c-expl-R-R)/L]} (6.1)

can be a representative approximation for the work f as a function of K.
Here c is a certain positive coefficient and the quantity [ is the correla-
tion length of the film of condensate around the nucleus. We shall
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consider some positive quantity / as a given parameter of the theory.
The fact that the nucleus is macroscopic means

/R, <<1 (6.2)

To compact the notation we introduce the auxiliary quantity,
K = 4m3 / 3u° (6.3)

which is the number of molecules of condensate contained inside the
imaginary sphere with radius /. As follows from Egs. (1.2) and (6.2), the
condition that the nucleus is of macroscopic size can be rewritten as

(x /vl 3<<1 (6.4)

Let us find the expression for 3, which corresponds to the approxi-
mation given by Eq. (6.1) Differentiating f with respect to v and using
Egs. (1.1), (2.17), and (6.3), we obtain

B, = % efx v exp [(R - R, /1] (6.5)

According to Egs. (5.15), (5.14), and (5.11) the sign of £, in Eq. (6.5) is
negative (Ac < 0). Therefore, the coefficient ¢ in Egs. (6.1) and (6.5) must
be positive. This coefficient can be found with the help of the boundary
condition, F'| ., =0, for the work of heterogeneous formation of a droplet
ifone recognize§ Eq. (6.1) to be valid down to R = R,,. Taking into account
Egs. (1.2), (1.3), (5.11), (5.12), and (5.14), we find from Egs. (2.12) and
(6.1)

¢ = s/|Ag| (6.6)

Using Eq. (6.6) in Eq. (6.5) and substituting the resulting relation for
b, into Eq. (1.4), and taking account of Eq. (5.11), we have

4nRZs

b, = % av - 30T K v*exp [<(R-R,) /1] (6.7)

Differentiating b, with respect to v, recognizing Egs. (1.1), (6.3), and
substituting the result into the left-hand side of Eq. (1.5), we obtain the
equation for the coordinate v of the point of maximum of b,



F.M. Kuni et al./Adv. Colloid Interface Sci. 95 (1996) 71-124 103

2 " 41cR?Ls

9ot g

K% vyhexp [<(Ry—R,) /11=0 (6.8)

where, in accordance with (v, / v)® < 1and the inequality (6.4), we have
neglected small terms of the order of (k/v)V3.
Equation (6.8) can be solved analytically. We have

vy = 4nR3 / 3v* (6.9)
where

sR?L
RO‘—‘Rn+l In ﬁ (6.10)

As follows from Eq. (6.10), in order to satisfy B, > R, we must have
s>2yl* / R2 (6.11)
In view of Egs. (5.12) and (5.14), Eq. (6.11) can be rewritten as

Ac / y>1+212/ R? (6.12)

The fulfilment of Eq. (6.11) means that the maximum of the chemical
potential of the condensate, (b,),, really exists, and thus the process of
heterogeneous nucleation on condensation nuclei will be barrierless at
b = (b,)y. We see that Eq. (6.11) represents not only the necessary
condition (as Eq. (5.15)) but also the sufficient condition for barrierless
heterogeneous nucleation on macroscopic insoluble nuclei that are char-
acterized by parameters Ac, /, and R,,.
Let us write the inequality R > R,, in the form

v, / vg)<1 (6.13)
and the inequality [/ R, << 1 as

(x /vg) << 1 (6.14)
With increasing R, and with [ fixed, the ratio RyR, decreases and the

quantities R, and R, — R, grow. Along with this, the inequality in Eq.
(6.13) becomes weaker and the inequality in Eq. (6.14), by contrast,
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becomes stronger. Increase of the ratio s/y leads to increase of all three
quantities RyR,, R,, R, - R, and, as a result, strengthens both the
inequality in Eq. (6.13) and the inequality in Eq. (6.14).

Substituting Egs. (6.9) and (6.10) in Eq. (6.7), and taking into account
Eqgs. (6.3) and (1.11), we obtain the expression for the threshold value
of the vapour chemical potential,

78 _|
bthzgavo%lLl—(v—}i)] Jl (6.15)

In view of Eq. (6.14), Eq. (6.15) is replaced with high accuracy by

by, = % vy (6.16)

According to Egs. (6.16), (6.9), and (6.10), in the case of macroscopic
nuclei we have always b, << 1. Equation (6.16) shows that b, coincides
with the value of the vapour chemical potential at which a homogene-
ously formed critical droplet contains v molecules, i.e., is of radius R,,.
At b = b, (b, << 1) the work of homogeneous formation of a critical
droplet that determines the activation barrier to homogeneous nucleation
appears so large that homogeneous nucleation does not occur. Mean-
while, at b = b,;, the heterogeneous nucleation is already barrierless.

Equation (6.16) shows also that the value of b, is smaller by the factor
(Vo/V,)¥3 ((vo/v,)¥® > 1) than the chemical potential of the vapour in
equilibrium with which the homogeneously formed critical droplet has
a radius that coincides with the radius R, of the condensation nucleus.

Recognizing what was said above about the behaviour of Ryand RyR,,
with variation of R, and s/y, we conclude that with increasing R, and s/y
the value of b,, decreases.

Differentiating the left-hand and the right-hand sides of Eq. (6.7)
twice with respect to v, substituting Eqgs. (6.9) and (6.10) and using Egs.
(1.3) and (6.3), we have

#,) o ]
aV2V :_5-7-a}<‘/3v52|L1—4[V—J J (6.17)
0

The correction 4(k/vy)¥® in Eq. (6.17) describes the relative role of the
contribution to (02, /dv?), from the surface energy av?3 in comparison

with the contribution from the work f of wetting of the nucleus. We see,
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that the role of the contribution of the work f increases on including
higher-order derivatives and the role of the contribution of the surface
energy decreases. With fulfilment of Eq. (6.14), the third-order deriva-
tive (33b, /9v3), can be easily calculated to first order in the small
parameter (x/vy)Y3. Differentiating the exponential in the second term
on the right-hand side of Eq. (6.7) with respect to v three times and
taking into account Eqgs. (1.1), (6.3), (6.10), and (1.3), we have

9%
[ Vl 2 Gy 6.18)

ovd | 81

Equations (6.16)—(6.18) which express the chemical potential b, and
its derivatives at v = v, allow us to find the main characteristics of
heterogeneous nucleation in the prethreshold region of the vapour
metastable state according to the program formulated in Section 3. As
follows from Eqgs. (6.17) and (6.18), the condition for validity of the
parabolic approximation for b, in the neighbourhood of the point v = v,
which is given by Eq. (3.3), is fulfilled with

% K vt [v-vy| <<1 (6.19)

Substituting Eqs. (6.16) and (6.17) in Eq. (3.4) yields for the equilib-
rium (v = v,) and the critical (v =v,) droplets

v, =V [1 — 3. 2%k /vy s‘/ﬂ

v, = Vg [1 +3. 2%k /vy)" slﬂ (6.20)
By the same token, we find from Eqgs. (6.16), (6.17), and (3.13) the
following relation for the half-widths Av, and Av, of the potential well
and the potential hump in the work of heterogeneous formation of a
droplet:

Av,=Av, =3 - 27 a2 v vy e (6.21)

Finally, using Eqs. (6.16), (6.17), and (3.8), we obtain the relation for
the activation energy AF
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27/2 2. L. 3
AF = 5 avg? (K /vg) ¢ e” (6.22)

In order to satisfy Eq. (6.19) at v=v, and v = v,, we need, as is clear
from Eq. (6.20),

£ << (K /vy)" (6.23)

In view of Eq. (6.14), the quantity on the right-hand side of Eq. (6.23)
is small. According to Egs. (6.9) and (6.10), this quantity decreases with
increasing size of the nucleus. Note now that with the aid of Egs. (6.22)
and (3.16) the value of €12 may be estimated in the prethreshold region
of the vapour metastable state as

14 -1 -1 ~1/,
£ ~a K B vy (6.24)

It is seen that the right-hand side of Eq. (6.24), as well as the right-hand
side of Eq. (6.23), is considerably smaller than unity. This allows us to
restrict consideration to values of €2 and, the more so, € which are much
less than unity.

Let us reduce Eq. (6.23), with the aid of Eq. (6.24), to the form

a k<1 (6.25)

Sincea ~ 10 and x >> 1, Eq. (6.25) holds, even though by a small margin.
With fulfilment of Eq. (6.25), Eqgs. (6.23) and (6.24) are consistent, and
this justifies using the parabolic approximation, Eq. (3.2), for 4, in
calculations of thermodynamic quantities within the prethreshold re-
gion of the vapour metastable state. The fact that Eq. (6.25) is not
related explicitly to the condition of macroscopic size of the nucleus, Eq.
(6.4), is not surprising because that condition is the basis of Eq. (6.14),
the left-hand side of which has defined the small parameter of the
theory, (/vy)?. The latter has been used to derive the expressions for
(3%b, /0v?), and (3%b,, /av3),,.

To fulfil Egs. (3.17) and (3.18), it is required that the condensation
nucleus be of macroscopic size. Let us recall that Eq. (3.17) is responsible
for the validity of the parabolic approximation in Eq. (3.2) for b, in the
cases of near-equilibrium and near-critical droplets while Eq. (3.18)
allows us to regard the variable v as continuous for these droplets.
Substituting Eq. (6.24)in Eq. (6.21), we find
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AV, = Av, ~a B kP v (6.26)

whence, with v}/? >> 1 (this is certain when Eq. (6.14) holds), it follows
that Av, >> 1 and Av, >> 1. Finding, then, with the aid of Eqgs. (6.26) and
(6.20), the ratios Av,/v, and Av, /v, and recognizing Eq. (6.24), we obtain

Av, Iv, = AV, v, ~a”" K" vy (6.27)

whence, with vé/3 >> 1, we have a confirmation of Eq. (3.17).

7. Power-law approximation to the work of wetting of a nucleus

Power-law forces are common in nature. It is enough to recall the van
der Waals forces and, first of all, dispersion interactions. The power-law
behaviour of these forces over large distances (with retardation and
without it) is established by science for certain. Therefore, together with
the exponential approximation, Eq. (6.1), to the work of wetting of the
condensation nucleus in a droplet, the power-law approximation to the
work f as a function of thickness 2 = R - R, of the film of condensate
between the nucleus and the vapour is also representative:

(7.1

J R, )
f:fll—cp' R—Rn\J

where ¢, and m are positive parameters and the work f, of wetting the
nucleus by the bulk condensate phase is given, as before, by Eq. (5.11).

Let us see how the main results of the theory look using Eq. (7.1)
instead of Eq. (6.1). We need consider only the formulae that must be
changed in passing from Eq. (6.1) to Eq. (7.1).

Differentiating the left-hand side and the right-hand side of Eq. (7.1)
with respect to v, and taking into account Egs. (2.17), (5.11), (5.12), and
(1.1), we find

Vi m+2
1 . |Ac| {4n R

[ =——aV B —on|— | mec, ————— (7.2)
B\ 3 v 3u% p (R _Rn)m+1

According to Egs. (1.4) and (7.2), the chemical potential b, can be written
as

(7.3)

%
2 1, |ac| (4n ) Ry
Vo3 3 Y

bo==av"™_-Zaqv me, —— ———
3u® p (R _ Rn)m+1
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In order to write the relation for the point v = v, of the maximum of
b, 1n an analytical form, let us restrict ourselves to the case of thin films,
for which there is (R - R,)/R,, << 1. We will assume that the condition
that the condensation nucleus be of macroscopic size also holds. In the
case under consideration the condition can be written as (V)Y3/R << 1,
and, in view of Eq. (1.2), this is equivalent to v1/3 >> 1.

Instead of Eq. (6.8), in order to find v, we have now the following
equation:

| m+2

- A
2 1 4/3I_0_m(m+1)c

_L = __n 4
av B+ 9 avg . R, —Rn)m*Z 0 (7.4)

9

Note that in deriving Eq. (7.4) we have neglected terms of the order of
(Rq— R,)/R, in relative magnitude.
Solving Eq. (7.4), we find

Ry=R,(1+9) (7.5)
where

Yo
d= {cpm(m +1) %%l} o (7.6)
In order to satisfy the inequality
(Ry-R)R, << 1 (7.7)
according to Eq. (7.5) we must have
d<<1 (7.8)

As seen from Eq. (7.6), Eq. (7.8) holds for sufficiently small values of
the coefficient c,. An explicit definition of ¢, will be given in the next
section.

Instead of Eq. (6.15), we have now

) 3 R
b Z%av ‘/{1— — Rh:j (7.9)

In view of Egs. (7.5) and (7.8), one can consider
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bu = % av,” (7.10)
as an appropriate approximation to the threshold value of the vapour
chemical potential. With v1/3 >> 1 we have, as before, b,, << 1.

Similarly to the case of the exponential approximation, in passing
from the first-order derivative to higher-order derivatives of the chemi-
cal potential b, of condensate with respect to v the contribution of the
disjoining pressure increases relatively to the contribution of the capil-
lary pressure. Keeping only terms which are of first order in the small
parameter given by Eq. (7.8), we obtain

9%b
[a ) :“2‘2‘7‘(m+2) avys &1 (7.11)
M 0
3%,
( 5 = | = 8% (m +2) (m+3)avy 282 (7.12)
A%
0

Instead of Egs. (6.19)—(6.22), we have now

m+3 |v-vg]

dlec1 (7.13)
9 Vo

v, =V, [1 ~3.2%@m +2) "2 8% g‘ﬂ

vV, =V, [1 +3 - 2%(m +2)" 5% g‘ﬂ (7.14)

Av,=Av,=3-27m +2) " a v 8 e (7.15)
2" Yo sVe Y

AF:?(m+2) avi® 872 €7 (7.16)

In order to satisfy Eq. (7.13) at v=v, and v=v, with v, and v, given
by Eq. (7.14), the inequality,

Yy
Yo ce (m +2) 81/2
m+3

€ (7.17)
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must hold. This inequality is similar to Eq. (6.23). In view of Eq. (7.8),
it follows from Eq. (7.17) that €% << 1.

From Egs. (7.16) and (3.16) in the prethreshold region of the vapour
metastable state, we find

g%~ (m+2)%avH % (7.18)
Consistency of Egs. (7.17) and (7.18) requires

ﬂS—l a v << 1 (7.19)
(m+2)7%

With a sufficiently large value of v, (which is provided by a nuclei of
macroscopic size), one may expect Eq. (7.19) to be fulfilled.

8. Patching the exponential and the power-law
approximations to the work of wetting of a nucleus

As was said above, the power-law, Eq. (7.1), and the exponential Eq.
(6.1), approximations to the work of wetting of a nucleus reflect the
power-law and the exponential behaviour of molecular correlations in a
liquid in their dependence on the distances between molecules.

According to the asymptotic theory of capillary systems [40] one
should expect the power-law approximation, Eq. (7.1), to the work of
wetting of a nucleus to be close to reality when the thickness R ~ R, of
the liquid film of condensate between the nucleus and vapour satisfies
the inequality (R - R,,)/(v)¥3 >> 1 by a substantial margin. Since (v*)1/3
estimates the mean intermolecular distance in a liquid, the quantity on
the left-hand side of the inequality represents the approximate number
of monolayers in the film. This number should be large enough to ensure
the practical non-overlapping of the surface layers of the film at its
boundaries with the nucleus and the vapour. Note that the inequality
(R - R,)/(v")V3 >> 1 may be consistent with Eq. (7.7) which has allowed
us to obtain in analytical form all the results for the power-law approxi-
mation to the work of wetting. Indeed, the right-hand side of Eq. (7.7)
is equal to the product of (R - R,)/(v*)Y? and (v¥)Y3/R, and with strong
fulfilment of the condition of macroscopic size of the nucleus, (V)V3/R,,
<< 1, Eq. (7.7) can be fulfilled even with (R - R, )/(v)? >> 1.
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According to the asymptotic theory of capillary systems [40] and
gradient theory for structural forces in thin liquid films [38,39], one
should also expect the exponential approximation, Eq. (6.1), to the work
of wetting to be close to reality when the thickness R - R, of the liquid
film is relatively small and the number of monolayers in the film is not
yet so large.

Thus, we come to the following conclusion. If the radius R, given by
Eq. (6.10) does not exceed the radius R, by too many multiples of the
liquid monolayer thickness, then one should use the exponential ap-
proximation, Eq. (6.1), in the theory. Otherwise, if the radius R, given
by Egs. (7.5) and (7.6) considerably exceeds the radius R, by many
multiples of the liquid monolayer thickness, then one should use the
power-law approximation, Eq. (7.1), in the theory.

It is clear from Egs. (6.10), (7.5), and (7.6) that with increasing radius
R, and ratio s/y one passes inevitably from the situation where the
theory needs the exponential approximation, Eq. (6.1), to the situation
where the theory needs the power-law approximation, Eq. (7.1).

The situations described by Egs. (6.1) and (7.1) are extremal. In
between, there is an intermediate region of variation of parameters R,,
and s/y to describe which we need more detailed information on the
dependence of the work f of wetting on the thickness of the liquid film
between the nucleus and the vapour. It follows from the general formu-
lation, Egs. (2.10), (2.7), (2.8), and (5.11), that in the case of insoluble
uncharged nuclei the shift /~f, is equal to the difference in grand
thermodynamic potential between the vapour which is perturbed by the
presence of a nucleus of condensation and located outside the sphere of
radius R and the liquid which is perturbed by the nucleus and located
outside the same sphere of radius R. Thus, we have an opportunity for
direct calculation of the shift /~f, by methods of statistical thermody-
namics. However, this is an independent problem going outside the
scope of the present investigation.

We estimate the coefficient ¢, in Eq. (7.1) in the following way.
Considering Egs. (6.1) and (7.1) as limiting at small and large R (with
the radius R, of the nucleus and the ratio s/y fixed), let us patch these
two approximations together at droplet radius R = R which lies between
the regions of validity for the power-law and the exponential approxi-
mations. Taking into account the equality at R = R of the approximations
themselves and their first-order derivatives with respect to R, we find

R=R, +ml (8.1)
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ml Y s
= [Rne) |Ac| (8.2)
where e is the base of natural logarithms.

Substituting Eq. (8.2) in Eq. (7.1), we conclude that the factor before
(R—-R,)™™ does not depend on the nucleus radius R, which is as it should
be, but depends on such characteristics of the nucleus and condensate
as s, |Aol, [, and m.

The parameter m in Eq. (7.1) is equal to 2 or 3 depending on whether
the van der Waals forces or the forces concerned with electromagnetic
retardation predominate at large distances between molecules of the
substance considered. This follows from Eqs. (7.2), (5.8), and the results
obtained for the disjoining pressure in Refs. [12,30,40].

With m = 2 and m = 3 we see from Egs. (6.1) and (8.1) that f|z_; = f.
and the value R of the droplet radius R lies at the upper edge of the
region of validity for the exponential approximation. At the same time
we see from Egs. (7.1) and (8.1) that the value R lies at the left edge of
the validity region for the power-law approximation which requires, as

was mentioned above, (R - R,)/(v)13 >> 1.
Substituting Eq. (8.2) in Eq. (7.6) yields

l/m+2 l M ina2
S=(m™m+1)——| |5 8.3

n

Substituting Eq. (8.3) with m = 2 in Eq. (7.8), we obtain
(s/7A1/R,)"? << 1 (8.4)

Equation (8.4) defines in an explicit form the condition on the parame-
ters of a nucleus and film of condensate that ensures smallness of the
film thickness at R = R in comparison with the nucleus radius. The
inequality (R, — R, )/(v*)V3 >> 1 is fulfilled by this if we have

(s/7)(IR,) 2V B >> 1 (8.5)

With characteristic values of the parameterss, v, [, v*, and R,, Egs. (8.4)
and (8.5) are fulfilled with a large margin.

Let us return to the estimate of the left-hand side of Eq. (7.19).
Substituting Eq. (8.3) in Eq. (7.19) at m = 2, taking into account Egs.
(1.2), (6.3) and supposing v52'? = v;2/9, we find that Eq. (7.19) holds with
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L. - Sl -1
(v/8)%a Ky B << 1 (8.6)

With s > 2yl/R? (i.e. with fulfilment of Eq. (6.11)), the left-hand side of
Eq. (8.6) satisfies, with account taken of Egs. (1.2) and (6.3), inequality
(y/s)aB KBV R cca B (8.7)
Hence we see that Eq. (8.6) certainly holds with a3k << 1 (i.e. with
fulfilment of Eq. (6.25)). Thus, the sufficient condition for barrierless
heterogeneous nucleation, Eq. (6.11), and the condition of validity for
the exponential approximation, Eq. (6.25), are sufficient to ensure
validity of the analytical results for the power-law approximation to the
work of wetting in the prethreshold region of the vapour metastable
state.

Together with the estimate given by Eq. (8.2) from the patching
procedure for the exponential and the power-law approximations, we
can give a rigorous expression for the coefficient ¢, which follows from
the results of direct calculation of the asymptotic form for the disjoining
pressure by means of the microscopic theory of dispersion interactions
[40]. According to Eq. (62) from Ref. [40], we have to the first order in
the thickness A of a film, neglecting the effects of retardation and
formation of adsorbed layers,

I1=B,/h3, h<<R, (8.8)
where, in our notation,
B, = (/6) A(l* — 11P) (1Y - 1% (8.9)

with v¥the volume per molecule of the nucleus substance and A the force
constant for the dispersion-force interaction of molecules.

Comparing Eq. (8.8) (with account taken of Egs. (5.7) and (5.8)) with
Eq. (7.2) at m = 2, putting v-2/3 = v;2/3 and using Eq. (1.2), we obtain

A [1 i) (8.10)

e, =———————— | ~— -
P120v*R2|Ac| |V v

We see from Egs. (8.10) and (8.2) that the parameters A, /, and s must
be related, even though only approximately, by
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1 1
A[;)—Y—@}v“l% (8.11)

Depending on the long-range character of the structural forces de-
scribed by the exponential approximation to the work of wetting, the
patching of the exponential and power-law approximations may occur
for rather large thicknesses of film, when the forces are weak. Never-
theless, even in this case these forces play an important role in nuclea-
tion processes.

9. Experimental foundation for the exponential and the power-law
approximations to the work of wetting of a nucleus

Let us trace the relation of the theory of condensation on wettable
solid insoluble nuclei to the disjoining pressure isotherms IT = I1(A)
known from experiment [30,31,41-44]. The function I1(~#) is monotonic
in the case of nonpolar liquids. A corresponding dependence of 3, on £
for this case according to Eq. (5.8) is depicted in Fig. 5. The dependence
of B, on % on the left side of the curve is of a form close to exp(—A /1), the
small parameter [, the correlation length, being of the order of the

B, t

0 ~

Fig. 5. Dependence of b, on thickness % in the case of film of nonpolar liquid on quartz.



F.M. Kuni et al./Adv. Colloid Interface Sci. 95 (1996) 71-124 115

intermolecular distance in a liquid. The right side of the curve for the
dependence of B, on % obeys a power law approximately of the form h-3.

The larger the radius R, of the nucleus, the weaker is the capillary
effect and the smaller the deviation of the curve b, from B,. Then the
larger becomes the value of v at which the capillary effect competes with
the effect of disjoining pressure and the larger becomes the coordinate
v, of a maximum of b, in accordance with Egs. (6.10), (7.5), (8.3), and
(1.1). Thus, the exponential approximation, Eq. (6.1), to the work of
wetting of a condensation nucleus is applicable if the radius R, is not
too large and if Eq. (6.10) does not yet take R, and 2, = R, — R, out of
the region of validity of the exponential approximation for the dependence
of B, on 4 in Fig. 5. Then the results obtained in Section 6 may be used.

If, however, the radius R, is so large that Eqgs. (7.5) and (8.3) ensure
that R, and h, = R, — R, enter the region of validity of the power
approximation to the dependence of B, on 4 in Fig. 5, the power-law
approximation with m = 2 for the work of wetting of a condensation
nucleus holds. Then the results of Section 7 may be used. The smallness
of the correlation length parameter / in the case of nonpolar liquids
makes, in this case, rather real the applicability of the power-law
approximation to the dependence of B, on A in heterogeneous nucleation.

In the case of polar liquids and, especially, of polar liquids with
hydrogen bonds, the disjoining pressure isotherm I'l(%) is nonmonotonic
due to a contribution of structural forces. A dependence of B, on &
according to Eq. (5.8) corresponding to this case is depicted in Fig. 6 with
the left a-branch and the right B-branch. The region of unstable states
of a film is shown with the broken line in Fig. 6. In its stable part
(corresponding to a stable equilibrium of a film with undersaturated
vapour) the o-branch runs up to a film thickness & of about 7:10~7 to
8107 cm [41] and is of the form exp(-A/l), the correlation length
parameter [ being anomalously large and exceeding the intermolecular
distance in a liquid by a factor 10.

The capillary effect suppresses the B-branch for the dependence of 8,
on h even at a rather large radius R, of a nucleus when the capillary
effect is weak. Practically, the threshold value of the vapour chemical
potential due to the a-branch turns out to be always much higher than
the threshold value of the vapour chemical potential due to the -branch.
Thus, the o-branch limits, on the vapour supersaturation scale, the
possibility of barrierless heterogeneous nucleation and, hence, only the
o-branch is important in heterogeneous condensation. As a result, the
typical behaviour of the condensate chemical potential b, depicted in
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Fig. 6. Dependence of b, on thickness £ in the case of film of polar liquid on quartz.

Fig. 1 is maintained also in the case of polar liquids. We emphasize that
it is the capillary effect that makes the behaviour of the drop chemical
potential in the case of polar liquids with hydrogen bonds qualitatively
similar to that in the case of nonpolar liquids.

The exponential approximation is applicable in the theory of hetero-
geneous nucleation if the radius R,, is not too large and Eq. (6.10) does
not yet take R and k, out of the region of validity of the exponential
approximation for the dependence of 8, on 4.

What is said above should be complemented with the following. The
above subdivision of liquids into nonpolar and polar is rather arbitrary.
Actually, not only the nature of a liquid, but also the nature of the
nucleus matter should be taken into account. One should remember that,
both in the case of nonpolar liquids and in the case of polar liquids, the
quantity B, tends to —e as h — 0, as was depicted qualitatively in Figs. 5
and 6. The approach of B, to —- proceeds logarithmically irrespective of
whether the isotherm of adsorption on the nucleus surface is linear or a
power at small v and at small vapour pressures. Thus, the exponential
approximation to the dependence of B, on % (and, hence, the exponential
approximation to the work f of wetting of the nucleus) becomes invalid for
certain as v — v,. Nevertheless, this will not lead, as we will show now,
to significant corrections to the results obtained in Section 6.



F.M. Kuni et al./Adv. Colloid Interface Sci. 95 (1996) 71-124 117

Let us describe the procedure of matching the exponential approxi-
mation to the work of wetting of the nucleus by a condensate film with
the experimental dependence of f on v resulting from the behaviour
observed for B, near the point v =v,.. The experimental dependence of f
on v will be called the “pre-exponential approximation” (it is not neces-
sarily determined by the Henry adsorption law which is applied only for
a smooth homogeneous surface of the nucleus).

We will mark with superscripts 1 and 2 quantities calculated using
the exponential approximation and the pre-exponential approximation,
respectively. We have

f(l):f* {1 _Ce €xXp [_(R _Rn) /l ]} (91)

where the factor ¢, differs from the right-hand side of Eq. (6.6) since the
approximation given by Eq. (9.1) may not be extended all the way to the
value v =v,. Just this factor will be the quantity sought.

The contribution to the condensate chemical potential B, (as a
function of 2 or v) is considered to be known from experiment. With
regard to B{?, we obtain from Egs. (5.8), (5.9), (1.1)~(1.3)

A%
f@=] B dv -avk (9.2)

Vll

It is of note that the integral in (9.2) converges because B{¥ behaves as
Inkash —0.

The dependence of B{" and B{? on v is depicted qualitatively by the
curves 1 and 2 in Fig. 7 where the coordinate of their intersection point
is designated as v,. This coordinate, as well as curve 1 itself, is a function
of the factor ¢, we sought: v, = v,(c,). Evidently, B® - BV <0 at v < v,
and P -BV>0atv>v,.

We choose the factor c, and the coordinate v, in such a way as to satisfy
FAl o =FfP|,, - Asis clear from Fig. 7 and Eq (2.17), the dependence
of f . and facd on v will then be depicted qualitatively by curves 1 and 2
in Fig. 8. The values of the work fat v=v, indicated in Fig. 8 correspond
to the asymptotic forms given by Eqgs. (9.1) and (9.2). Naturally, the
asymptotic form given by Eq. (9.1) has a physical meaning only at v >
v, and the asymptotic form given by Eq. (9.2) only at v < v,. The value
[ indicated in Fig. 8 is attained asymptotically by the function described
by Eq. (9.1) as v — oo,
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Fig. 7. Dependence of the chemical potential B, on Vv according to the exponential
approximation (curve 1) and pre-exponential approximation (curve 2).

o | v v
—av’®
2
f(1-&)
1 2
1
f.

Fig. 8. Dependence of the work fon v according to the exponential approximation (curve
1) and pre-exponential approximation (curve 2).

In contrast with the curves 1 and 2 in Fig. 7, curves 1 and 2 in Fig. 8 do
not intersect, but only touch each other at the point v =v,. It is seen that

fe <f(1)|v=v, <f(2)|v=v <0 (9.3)
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With Eqgs. (5.11), (5.12), (5.14), (5.15),(9.1),(9.2),(1.2), (1.3), and (6.6)
in mind, we conclude from Eq. (9.3) that

O<c,<cx<1 (9.4)

Thus, on using the exponential approximation for the work fin the
vicinity of the point v =v,, (lying on the v-axis much to the right from the
point v = v,), which is the only region important for theory, all the
influence of a deviation of f from the true behaviour of the work of
wetting near the point v=v, (in the region where the film thickness is
of molecular dimensions) is reduced to decreasing the factor in the
exponent. As is seen from Fig. 8, the ratio ¢ /c will not strongly differ
from unity if the vicinity of the point v =v, where a deviation from the
exponential approximation is observed, is comparatively narrow. A
small difference between ¢ and ¢, will not influence significantly the
results of the thermodynamic theory presented in Sections 6-8 since the
factor c (or ¢,) appears in the theory only through a Ry-value where c
enters only in the argument of the logarithm, as is seen from Eqs. (6.6)
and (6.10), and through a 8-value where ¢ enters as 0117/ (m+2) " as is seen
from Eqgs. (6.6), (7.6), and (8.2).

If the experimental exponential approximation to the disjoining
pressure of a film is written in the form [30,31,41,44]

(k) = K exp (~h/l) (9.5)

then, from Eqs. (5.8), (6.5), (6.6), (5.11), (5.12), (6.3), and (1.2), in the
quasi-flat approximation and with Eq. (9.4) in mind, we obtain

K <sll (9.6)

It is of note that the same relation between the parameters K, s, and /
follows from the general formula given by Eq. (5.16).

Numerical estimates: water vapour nucleation on quartz
particles

The relationships obtained in the previous sections for the charac-
teristics of heterogeneous nucleation will now be illustrated with nu-
merical estimates. For the sake of illustration, we choose the case where
a polar liquid is condensed on solid insoluble macroscopic nuclei. More
specifically, we will consider water as a condensate and quartz grits as
condensation nuclei. In this case, the exponential approximation for the
effect of overlapping of the surface layers of a condensate film on a



120 F.M. Kunt et al./Adv. Colloid Interface Sci. 95 (1996) 71-124

nucleus is realized (the value of 2, = Ry — R, runs into the stable part
of the a-branch of the disjoining pressure isotherm).

For a water film on quartz, we have v* = 3-10723 cm? (the monolayer
thickness is about 3-10~8 cm), / = 2.33-10~7 cm (which corresponds to the
data from Refs. [31,41]), and a = 9.4 (at 273 K). We set R, = 3.4.10% cm
and |Ac|/y = 1.3 (which satisfies the restriction expressed by Eq. (6.11)).
Herewith we find from Egs. (6.3) and (1.2): k = 1.8-103, v, = 5.5:105; the
nucleus macroscopicity parameter /R, = (x/v,)"? is about 0.07 and,
hence, is small.

According to Eq. (6.10), we have Ry =4.2.10cm and Ry— R, =810~
cm. This shows the applicability of the exponential approximation, Eq.
(6.1) (the maximum of b, running into the stability region of the
o-branch of the disjoining pressure isotherm). According to Eq. (1.1), we
also have vy = 107, (v, /vy)® = 0.8, and (v, )" = 0.06, so that the
conditions expressed in Egs. (6.13) and (6.14) are fulfilled with certainty.

According to Eq. (6.16), we have b,, = 0.029 so that b,, << 1. Further,
we have AF = 4.2.105 €32, It is seen from Eq. (6.24) that e’? ~ 2.1072.

The quantity a 3k % on the left-hand side of the inequality (6.25)
is equal to 0.09, so that this inequality is satisfied.

Further, according to Eq. (6.26), we have in the pre-threshold region
of vapour supersaturation Av, = Av, ~ 5-10%.

Using the data on the constants K and [ from Refs. [31,41] (K =
9.94-107 dyne/cm?) and with the value |Acl/y = 1.3 chosen for these
calculations, Egs. (5.12), (5.14), and (9.6) yield y > 77 dyne/cm, to be
compared with the tabulated value y= 75.6 dyne/cm [45], which confirms
the plausibility of the chosen value |Ac]/y = 1.3.

We now show that the above parameter values satisfy the condition,
Eq. (4.19), of free-molecule exchange of matter between a heterogene-
ously formed drop and vapour. The free molecular path in vapour!/,, can
be estimated as 0.02 cm under the normal conditions (n, = 10'® cm™, T
= 273 K). Recognizing the condensation coefficient to be o,z ~ 1 to 1072
for water [24,46], we estimate the right-hand side of Eq. (4.19) as [ /o
~0.02 to 2 cm. Taking into account the above estimate of R, we see the
condition (4.19) to be satisfied.

At free molecular exchange of matter between a drop and vapour, the
quantity w characterizing the rate of exchange is determined by Eq.
(4.5). We have wy = 5.5-101% 0. ¢! at nP = 1017 cm™3 and R = R,,. Knowing
wq and Av, and using Eq. (4.15), we find the characteristic time ¢, for
the development of phase transition on insoluble macroscopic nuclei: ¢,
~0.02 ogl c.
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Conclusion

The numerical estimates obtained for the situation when the expo-
nential approximation for the effect of overlapping surface layers of a
liquid film on a condensation nucleus is valid, confirm the primary ideas
and the conclusions of the theory.

The fact that the b,,-values turned out to be much smaller than unity,
exhibits the reality of the barrierless heterogeneous phase transforma-
tion of a metastable phase on macroscopic nuclei dispersed through the
whole of its volume (not at its outer boundaries) already at a rather small
supersaturation of the metastable phase.

A nucleus is surrounded by a rather thick liquid film in the prethre-
shold region of vapour metastability (which is just the region of interest
for theory) both in “near-critical” drops (for which |v - v | < Av,) and in
“near-equilibrium” drops (for which |v - v | < Av,). Although the effect of
overlapping of the film surface layers due to the influence of surface
forces of a condensation nucleus is relatively weak for the thick film, the
effect already ensures an extremely high energetic preference for het-
erogeneous as against homogeneous nucleation.

Below the prethreshold region of vapour metastability, the charac-
teristic v, of an equilibrium drop would be closer to v, than in the
prethreshold region. Here the solvation of a nucleus in the equilibrium
drop could be of a more complex character, occurring via discrete
“islands” instead of by formation of a uniform film. The theory would
then need all the information about the behaviour of the work of
heterogeneous formation of a drop in the region of molecular dimensions
for the thickness of a liquid film around the nucleus. Only the prethre-
shold region of vapour metastability is of interest for the theory and, in
addition, only this region is accessible for analytical description. This
region is also remarkable in that the information referred to above as
all being needed may be reduced to the knowledge of the three first
derivatives for the work f of wetting of the nucleus at the point v = v,
The second derivative 0%f/ av? | vay, allows us to determine the point v =
v itself, the first derivative df/ ov | v=v, Is needed for finding the threshold
value, b,,, for the vapour chemical potentlal and the third derivative
d%f/dv3],., is necessary for the calculation of v,, v,, Av,, Av,, AF, and ¢,.

The threshold value of the vapour chemical potential for heterogeneous
nucleation on macroscopic insoluble nuclei depends not only on the nucleus
size, i.e. on the purely geometrical factor, but also on the physical-chemical
properties of the nucleus surface and the drop surface.
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The experimental data on nucleation on macroscopic insoluble nuclei
present in the literature [47-49] do not allow a sufficiently complete
comparison between theory and experiment. The problem is that only
the data on the dependence of “critical” vapour supersaturation on the
size of “dry” condensation nuclei are given in Refs. [47—49]. The “critical”
supersaturation (., is understood as such a vapour supersaturation,
created sufficiently rapidly in the vapour-gas-medium under investiga-
tion, at which the condensation process proceeds rapidly. As is clear from
the considerations in this article, this supersaturation for heterogene-
ous nucleation will be close to the threshold value of vapour supersatu-
ration. With enough accuracy, we may set { ;. = {,;, and also {,;; = b,,
recognizing Eq. (1.8) and the smallness b,, with respect to unity. The
experimental dependence of { ,,, on IgR, given in Refs. [47-49] coincides
with the dependence of b,, on 1gR implied by Eq. (6.16) [or by Eq. (7.10)].
However, in order to determine the peculiarities in behaviour of the
condensate chemical potential at small thickness of a liquid film be-
tween a nucleus and vapour, we need more detailed information about
the size of equilibrium drops arising heterogeneously in undersaturated
vapour and about the dependence of the number of such drops on the
initial value of the vapour supersaturation and on the initial number of
condensation nuclei.
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