HTML AESTRACT * LINKEES

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 24 22 DECEMBER 2004

Role of nearest-neighbor drops in the kinetics of homogeneous nucleation
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A theory of simultaneous nucleation and drop growth in a supersaturated vapor is developed. The
theory makes use of the concept of “nearest-neighbor” drops. The effect of vapor heterogeneity
caused by vapor diffusion to a growing drop, formed previously, is accounted for by considering the
nucleation of the nearest-neighbor drop. The diffusional boundary value problem is solved through
the application of a recent theory that maintains material balance between the vapor and the drop,
even though the drop boundary is a moving one. This is fundamental to the use of the proper time
and space dependent vapor supersaturation in the application of nucleation theory. The conditions
are formulated under which the mean distance to the nearest-neighbor drop and the mean time to its
appearance can be determined reliably. Under these conditions, the mean time provides an estimate
of the duration of the nucleation stage, while the mean distance provides an estimate of the number
of drops formed per unit volume during the nucleation stage. It turns out, surprisingly, that these
estimates agree fairly well with the predictions of the simpler and more standard approach based on
the approximation that the density of the vapor phase remains uniform during the nucleation stage.
Thus, as a practical matter, in many situations, the use of the simpler and less rigorous method is
justified by the predictions of the more rigorous, but more complicated theory20@ American
Institute of Physics.[DOI: 10.1063/1.1819871

I. INTRODUCTION teristics of the nucleation stage, e.g., the total number of
. . . nucleating drops, the duration of the stage, etc., explicitly use
Since nucleation rates are extremely sensitive to the d&pe fact of the strong dependence of the nucleation rate on

gree of supersaturation, it is |r_npo_rtant, i describing thesupersaturation, while at the same time the calculations ne-
stages of homogeneous nucleation in a supersaturated Vapﬁfect the continual nonuniformity of the vapor due to the
to accurately account for vapor depletion by growing drop-

. 4 I rowing drops. A volume averaged rate of nucleation is thus
lets. One of the widespread methods for doing this involves) g arop 9

the approximation that the metastable phase remains uniforrrr?plam(ad by the nucleation rate at the volume averaged den-

in density as the supersaturation dechysThe method uses sity of the excess vapor. Evid_ently, such a rgplacement could
a feature characterized by the strong dependence of t,_%ecomefa solur(f[g of etrror with a st;oh@gnlmea} depen-
nucleation rate on supersaturation. This is the fact tha ence of hucleation rate on supersaturation.

completion of the nucleation stage, i.e., a practical cessation AN altérnate account of the vapor nonuniformity was
of the nucleation of new drops, occurs at a relatively smalPresented in Ref. 6. The corresponding commentaries can be

(few percent under characteristic conditipdecrease of the found in Ref. 7 where another approach to description of the
vapor supersaturation in the system. Therefore, the accumfit/Cleation stage, one that recognizes the vapor nonunifor-
lation of the condensing matter by every growing drop dur-Mity in the neighborhood of growing drop, is adopted. The
ing the nucleation stage is determined essentially by the la@XPplicit realization and the range of validity of this approach
of drop growth. The question is how many drops will be in depends essentially on the regime of drop growth, e.g., on a
the system at a given tim# free molecular or diffusion regime. In Ref. 7 it is assumed
The approximation of uniformit{y® assumes that the that the drops grow in the free-molecular regime during the
nucleation rate atis determined by a vapor density averagedwhole stage of nucleation. This limitation is very restrictive
over the volume of the excess vapor. The latter can be foundnd considerably narrows the range of validity of the theory
by subtraction of the number of molecules within the grow-in Ref. 7.
ing drops from the initial number of vapor molecules. At this This paper broadens the approach in Ref. 7 so that it
point a contradiction arises. The calculations of the characeovers a wide enough class of conditions to include the case
under which drops grow in the diffusion regime during the

dAuthor to whom correspondence should be addressed. Electronic maiPUdeatiO” stage. ) ) o
reiss@chem.ucla.edu The central object under consideration is a drop that ap-
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pears to be nearest to a given initially nucleated one. Thupath A of the vapor molecules that corresponds to such a
we will call this broadened approach to the description of thepressure of the inert gas is of the order of §8m. At the
nucleation stage the “approximation of the nearest-neighbotypical value of the diffusion coefficient I8 cn?s %, in a
drop.” range of 1-1&cm 3s™! of the nucleation rate, the radii of
Formulation of the conditions under which the theory isthe drops will reach values of 16—10"°cm by the end of
capable of sufficiently accurate predictions for the averagéhe nucleation stage. Therefore, the conditi{n) >\ is ful-
distance to a nearest-neighbor drop and for the average tinféled during the major part of the nucleation stage.
to its appearance, will be an important part of the study in ~ We will study the probability of nucleation of a new
this paper. Under these conditions, the average time to the@rop, growing in the supersaturated vapor, and nearest to the
appearance of a nearest-neighbor drop provides an estimatee formed initially. Note that, in spite a relative smallness
of the duration of the nucleation stage, and the average disf the growing drop formed initially, the nonuniformity it
tance to such a drop allows us to estimate the total number afreates in the supersaturated vapor quickly propagates via
drops per unit volume that will have been nucleated duringdiffusion. Until the nucleation of the nearest drop, the distri-
the nucleation stage. bution of vapor in the neighborhood of the growing drop can
Rigor of description of the nucleation of a nearest-be assumed to be spherically symmetric. That distribution is
neighbor drop is also achieved by the use of a new accuratgescribed by the concentratioifr,t) of the vapor molecules
nonsteady solution for the vapor concentration profile aroundh the vapor-gas medium in the vicinity of the growing drop.
the growing drog. Herer, with (r>R), is the distance from the center of the
Comparison of predictions for the above mentionedfirst drop. The vapor concentratiar{r,t) satisfies the conti-
theory of the nucleation stage obtained within this proposeduity equation into which Fick’s law has been substituted,
approach with those obtained via the approximation of uninamely,
formity reveals good agreement. This agreement is rather 5
surprising because it exists under conditions valid for the an(r,t) ZEa_[m(r 1] 1)
approximation of a nearest-neighbor drop. Under such con- at ror? o
ditions, every growing drop consumes the excess vapor, the ) o . . _ )
majority of which was initially concentrated in the sphere WhereD is the diffusion coefficient. Equatiofi) is subject

around the growing drop, a sphere whose radius is equal #§9 the initial condition

the average distance to a nearest-neighbor drop. n(r,0)=ny, 2)
Il. VAPOR CONCENTRATION IN THE NEIGHBORHOOD  Whereng is the initial uniform vapor concentration. Equation
OF A DROPLET (1) must also satisfy the boundary condition

Consider a vapor-gas medium that becomes supersatu- N(R,t)=n.., ©)

rgted instantaneogsl_y, so that d_r ops growi_ng irreversibly beﬁvherenw is the equilibrium vapor concentration at the sur-
gin to nucleate within the medium. Imagine the following ace of the drop at=R(t). The solution of Eq(1) must take
experiment. Choose the drop, which appeared first, and stuc{g/

o . . . ccount of the movement of the drop surface, i.e., of the time
the probability of the nucleation of a new drop in the ne'gh'dependence @ i.e., of the fact that with the raditR(t) of
borhood of the first one. The time of formation of the first S

q il h i D he radi fth initially formed droplet changing with time. Since the den-
LOp Wi dservg as the zderg 0 t|me.f enote; efra Ius o tl E\'sity of a liquid drop is much greater than that of the vapor,
chosen drop byR(t) an the mean free pat ot vapor Mol e rate of change d@® will be small compared to the rate of
ecules by\. At the time of nucleation of the first drop, its establishment on(r,t). The time dependence d(t) is
r_adlus_ evidently satisfies the inequalf(0)<A. Th's rela- determined by equating the number of molecules reaching
tion will hold for other drops nucleated at other times. Under, he drop via diffusion to the number of absorbed by the drop
some conditions it is possible that the nucleation stage wil '

terminate while the conditioR(t)<\ is still valid.” In this his balance is expressed by the relation

paper we consider the other situation, in which the inequality dR an(r,t)

R(t)>\ holds during the most of the nucleation stage, and g ~ V¢ or ’ )

the transport of vapor molecules to the drop occurs by means =R

of diffusion. This assumes that the density of the inert gas iwhereuv, is the volume per molecule in the drop. Equations
the system is large enough. In order to concentrate on thel)—(4) constitute the boundary value problem that must be
principal ideas of the proposed approach, the effects of thgolved forn(r,t). Unfortunately, Eq(4) renders the problem
release of the latent heat of condensation, Stephan’s fluxjonlinear so that, at the moment, only an approximate solu-
etc., are not considered. Under the restrictions on the regiotion is available.

of applicability of the presented approach that will be formu- ~ This approximation can be accurate if the parameter
lated below, the initial pressure of the excess vapor must be a=[v(Ng—n..)/2]+2 )

of the order of 1 atm. Since the nucleation stage finishes as velllo™ M
soon as the drops formed during it will condense even as small® a condition that holds far below the critical tem-
small part(several percentof the excess vapor, at the pres- perature.

sure of inert gas of 10 atm, we can disregard, with confi- In Ref. 8 it was shown that the solution of Eq%)—(4)
dence, the effects of release of condensation heat. The fremuld be approximated to the first orderdnby
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2B8tY3%ny—n..) (= u2\ 2 Herekg is the Boltzmann constant andis the liquid-vapor
n(r,t)=ngy— TJ’ 1-— surface tensionl” is approximately equal to the number of
™ u T molecules in the critical drop and is a large parameter of the
x expl — r2)dr, (6) theory. , _ ,
As is shown in Ref. 4, Eq13) has a high relative accu-
where racy ate(r,t)<1/". Whene(r,t)=1/", the nucleation rate
r—R(t) I(r,t)is etimes_ less theihy. As ¢(r,t) increases, exceedin_g
=— - (7)  the value 1IF, with a decrease of the distance to the growing
2(Dt)*2 drop, the accuracy of Eq13) decreases, but the nucleation
with ratel (r,t) also becomes small. Therefore,¢at 1T", the use
of Eq. (13) does not reduce the accuracy of further calcula-
R(t)=pt"?, (8 tions based on this expression.
an approximation foR(t), also valid to the first order im, The quantitiesy, 1(0), I are interconnected by thermo-
and where dynamics, but in our investigation it will be convenient to

consider them as independent parameters.
B=[2Dv (no—n.)]*?=2D " © pendemtp
Equation (8) is a relation that has been derived by other

approximate methods. However, the method in Ref. 8 mainN_ VARIOUS NEAREST NEIGHBOR RELATIONS
tains material balancémolecules lost from the vapor equal

the number appearing in the dijot the first order inq, According to the definition of the nucleation rate, the
whereas previous methods do not. quantity

)
I1l. NUCLEATION IN THE NEIGHBORHOOD dp=dtJ dr’477r’2I(r’,t) (15
OF A GROWING DROP R

We introduce a measure of vapor supersaturagiont) is the average number of new droplets formed, in the infini-
and of relative decrease of Supersaturatw,t) in the tesimal time intervadt, in aspherical |ayel’ betweddhandr

neighborhood of the growing drop_ These are Surrounding the initial drOp. Standard probablllty theory,
based on the smallnessap allowsdp to be regarded as the
(ri= n(r,H)—n. (10  Probability of formation of a single new drop in timu in
N, this spherical layer.
and Thus the quantity +dp is the probability that, in time
dt, no new drop will form in the layer. Sincgép<<1, it fol-
oir = SOTEED _momn(n). qp  lows that
bo Mo~ M- 1—dp=exp —dp). (16)
\(/)\;hzrego ' initial supersaturation of the vapor. Substitution The probability that, in a finite timeafter the appearance of
g. (6) into Eqg.(11) gives o . . .
the initial drop, no new drop will appear in the layer, is equal
BtY2 re u2\ M2 ) to the product of elementary probabilities, Ed6). Let us
o(r,t)= B, dr{ 1- 2 expf(—7). (120 denote this probability aB(r,t). Since the product of expo-

nentials in Eq(16) is equal to the exponential of the sum of

We restrict the situation to the case of homogeneous nuclezxponents of the exponentials multiplied, then for the prob-

ation in a vapor-gas medium, assuming the presence of foebility P(r,t), we have

eign particles to be negligible. The nucleation rate, the num- . )

ber of drops formed per unit volume in the vapor-gas P(r,t)zex;{ _f dt’f dr'amr 21 (r' )|, (17)

medium, per unit time, in the neighborhood of the initial 0 R(t")

drop, will be denoted by (r,t). The nucleation rate in the

initial uniform vapor-gas medium with vapor concentration

ny will be denoted byl,. This will be one of the important

parameters of the theory. P(r,t)—P(r), (18
Following Ref. 4, we adopt the simplified expression

The more rigorous derivation of E¢L7) is given in Appen-
dix A. As time increases

where P(r) is the probability that no new drops will ever
I(r,t)=1ge ey, (13)  appear in the layer. From Eqgl7) and(18) it follows that

Here,I' is a dimensionless parameter characterizing the de- (1) r
pendence of the free energy of the critical drop on the vapor P(r) =ex;{ - j dt’f

supersaturation at its initial valug,. In the capillary ap-
proximation this parameter is given by the expression The finite upper limit, rather tham, appears in the integral

5 3 in the exponent in Eq19) in order to exclude the nonphysi-

- 47va| 20 ] Mo~ N (14) cal caseR(t’)>r. Eqg. (19 indicates that the probability
3 |kgTIn[no/n.]j ng ° P(r) decreases with an increaserofThis is physically rea-

dr’dmr?1(r',t")|. (19
")

0 R(t
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sonable, since as the volume of the spherical layer is inAs expected, Eq$22) and(23) assure the necessary normal-
creased, the greater is the probability that a new drop will bézation conditions.
nucleated in it. (2) The probability densitys(r,t) that the nearest drop

We now introduce the probability densifyr,t) for the  will be found at the distance at timet is clearly
formation of a new drop, nearest to the initial drop, in time ‘
dt and in a spherical shell of thickneds. Then the product w(r,t)=47rr2P(r,t)f [(r,it")dt” [r>R(t)]. (29
f(r,t)dr dt is the probability of formation of the nearest 0
drop in timedt in the spherical shell of radiusand thick- By ysing Eq.(17), it is easy to show tha#(r,t) is normal-
nessdr. Sincedt anddr are infinitesimal, standard probabil- jzeq, j.e.,
ity theory shows that(r,t)4=r?dr dt is also equal to the
average number of drops forming in tindé¢ in the spherical fmdt ” dr g(r,t)=1. (25)
shell. Is the probability of formation of a single new drop in 0 R(t)
time dt within this spherical shell.

There are two related quantities associated with the ide®. DETAILED STATISTICAL-KINETIC RELATIONS
of the nearest drop that merit discussion. ThesdBré(r,t) CHARACTERIZING THE FORMATION OF THE NEW
related to the probability that the nearest-neighfmomsin DROP
the shelldr in timedt, and(2) (r,t) the probability density
that the nearest drop will bieundin dr at timet. A discus-
sion of these quantities is as follows:

(1) The formation of the nearest drop in tintd in a
spherical layedr implies that, during timd no other drop
has formed within the sphere of radinsand that, further-
more, in order for the drop formed br duringdt to remain _
the nearest one, no other drop must form within the sphere of rEf
radiusr after the timet+dt. The first condition is realized

with the probabilityP(r,t). It follows from Eqgs.(17) and % (r18)?2 r
=f dr ex —j dtf
0

It is of primary interest to calculate the mean distance
to the nearest drop and the mean timt® the formation of
the nearest drop. Using the general definition of the mean
distance contained in Eg&2), (20), (19), (13), and(12) we
obtain

rf(r)dr
0

(19) that the second condition is realized with the probability a7 47T "2l
p(r,t)=P(r)/P(r,t). Perhaps it is a bit simpler to see this k

by recognizing thap(r,t) is the probability(conditionalon ;{ 2BtY2 [ ( u2> 12
X ex| r

0

the fact that no drop has formed in the sphere at tintbat
no new drop forms in the sphere of radiusfter timet, so
that P(r)=P(r,t)p(r,t) which is only a rearranged form of (26)
the prior equation. Thus, the fact that the probability density

f(r,t) refers to a drop that remains a nearest one over ah’v
time is guaranteed by the use of the quan®ty), which is r’— Bt
the probability that there aneeverany drops in the volume Uu=_—"—-5"
lying “below” the spherical shell 4rr?dr. Thus, for the 2(Dy)
probability densityf(r,t) we have The derivation of Eq(26) is presented in Appendix B. We

also show herein how the E@26) can be reduced to the
f(r,0)=4mr2P(r)i(r,t) [r>R(1)]. (200 form

ara’ Ju

here

By using Eq.(19), it is easy to show that the normalization =092, (27

requirement forf (r,t), namely, where the characteristic length scalgis given by

o0 o 211/5
f dtf drf(r,t)=1 (21) ro= oD (28)
0 R(t) | 27lon
is satisfied. The parameter in Eq. (28) is defined as
Integrating the probability densiti(r,t) with respect to o
t from 0 to (r/B)? [in accordance with Eq(9)] or overr 77=J’ dx x 3exd —F(x)], (29
from BtY2 to «, one obtains, respectively, the probability !
densityf(r) for the formation of the nearest drop at the pointwhere
r and the probability density(t) for the formation of the 2 Fa(x-1)
i a(X— ®
nearest drop at anyat timet. Thus F()= —f dy(1—y 212
T X 1
f —f”"”zf t)dt 22
(=], fr.bdt, 22 x exp{—[ay(x—1)1%}. (30
The mean time to the formation of the nearest drop can be
f(t)=fw f(r,t)dr. (23) calculated in a manner similar to that used for the mean
R() distancer. The final expression far is
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TABLE |. The values ofp andy by representative values of the paramei&ra. The values in the cells should
be multiplied by the factor indicated in the second row.

r a 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10

50 7x 108 0.58 0.78 1.23 1.74 2.29 2.89 3.52 4.88 6.36
x X 1078 1.42 2.02 3.73 6.25 9.71 14.2 19.9 35.3 56.7

75 7% 103 0.30 0.45 0.79 1.19 1.63 211 2.63 3.76 5.00
x X 10°® 0.34 0.57 1.30 2.50 4.29 6.76 10.0 19.3 32.7

100 7x 1073 0.20 0.32 0.60 0.93 131 1.73 2.19 3.19 4.30
x X 10°© 0.12 0.25 0.67 1.42 2.59 4.27 6.55 13.2 23.2

This expression is more complicated than E@7)—(30).

t_=0.9t0%. (3D However, calculations with Eg37) are still possible with
a'n the help of usual mathematical programs sucivasLE. As
The numerical factor 0.9 in Eq31) is the value of the ex- We show below, Fig. 1 shows plots p{7) as a function of
pression 7 at typical values of the parametErand at representative
. values ofa. The plots demonstrate an expected behavior of
Sf do w8 exg — %) ~0.9. p(7) . At small 7, the pegrest d_rop can be nucleated_far from
0 the first drop, since it is not likely that a nearer prior drop

will be formed in a large volume surrounding the first drop.
Interdependence of the drops is absent. All the curves coin-
cide. At larger the dimensionless mean distanger) attains

rs its minimum valuep=r/p, since the opposite physical situ-

The characteristic time scalg and parametey are given by
the following expressions:

tozﬁ' (32) ation will prevail. This value is different for different curves.
However, the limiting value op depends rather weakly on
Y= j dx x Sexg —F(x)]. (33) the parameters andI.
1
Remarkably and conveniently, in accordance with E@9), VL. THE LIMITS OF APPLICABILITY OF THE THEORY
(30), and(33), the parameterg and y depend on neither the The results that have been presented are entirely reason-

nucleation ratd nor the diffusion cqefficienD. _Numericall able if the drops formed outside the sphere of the radius
values of and y needed for following numerical analysis during the time interval &t<t, do not, in essence, influ-
were calculated for the representative values of the paranence the vapor concentration within the sphere. This condi-

etersI', « and are presented in the Table I. __tion will obviously be satisfied if the first drop is not able to
Using ¢(r,t) specified by Eq(24), the mean distance

at timet to the nearest drop can be found as

r(t)= fxmr Y(r,t)ydr. (34) (7)1
Bt 1

Using Eqgs(24), (17), (12), and(13), r(t) is calculated by the
same way as the mean distancén order to write the final
expression compactly, it is convenient to introduce a length
scalepy and a time scaley with the help of expressions

Da?
2’7T|0

15
, (35

Po=—

2 ]
Po 1
o (36) |
03

70

Denote byp(7) the dimensionless mean distarde)/p, as
a function of dimensionless time=t/r,. For p(7) we find
. "

A= 12
p(r)=T +f1,2

T 0 L e e L SHLA B S e et s B S S R B S s |

7,:|./2/ 1/z
5 P
xXexp —p J dzZ‘J dxx2exgd —F(x)]}. _
0 1 FIG. 1. The dependence @f( ) on 7. Curves 1, 2, and 3 correspond to
I'=100, and «=0.03, 0.05, and 0.10. Curve 4 correspondsIte50,

(37) «=0.05.
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407

4 0N\
4
4 N
\

FIG. 2. The dependence ébn . Curves 1—3 correspond =50, 75, and /G- 3. The dependencies of parametégsand 5, on a. Solid lines corre-
100, respectively. spond tol’=50, dotted lines td'=75, and dashed lines 16=100.

o ) ) As can be seen from Fig. 3 the conditions needed for
significantly influence the state of the vapor outside thegpplicability of our approach,

sphere during. We can offer two measures of the achieve-

ment this situation. One is the rati, of diffusion length =1 (43
2+/Dt to the distance or

2Dt 5,~1 44

5D: . (38) v ( )

r are both satisfied it is greater than some, that depends

The other is the rati@d, of the decrease of the number of onI'. This y does not depend oy and decreases with an

vapor molecules within the sphere of radiuat timet to the ~ increase ofl". As seen from Fig. 3, as a good value fe§

number of molecules constituting the first drop at time With I'=50, we can takeap=0.1, and withI'=75 and

Thus I'=100, good values of, should be, respectively, 0.05 and
0.03.

r _
3Ugf _drr?[ng—n(r,t)]
R(n) VII. ESTIMATES FOR THE TOTAL NUMBER OF
= ) (39) DROPS AND THE DURATION OF THE NUCLEATION

v 3 N
R(1) STAGE
and from Eqs(27), (31), and(38) we have fordp It is useful to introduce a quantity given by
1 X 1/2 4
= — aa N
=7 77) ‘ (40 q= ??lot. (45)
rF;;irothe analysis of Eq39) it is convenient to introduce the From the definition of the nucleation rate, if drop growth did

not deplete the vapog, would represent the average number
of drops that would be formed in the volurieof a sphere of
the radiusr during the timet. Using Eqgs.(27) and(31) we

1/2
") . (41)

r
RO O'g%x
where Eq.(9) has also been taken into account. The quantit;}cInOI
¢ is itself of special interest. Introducing the solution Eg). X
into Eq. (39), and using Eqs(9), (27), (31), and (41) we q=0.57—. (46)
obtain K
; As can be seen from Eq$29) and (33), q, very usefully,
3 _ ” _y—2\12 does not depend on the nucleation dgteor on the diffusion
“ L dx(x 1)L dy(1=y™) coefficientD. In Fig. 4 plots showing the dependenceyain
) a are presented.
xexp{—[ay(x—1)]7. (42) It is apparent from Fig. 4, that there exists a wide range
As can be seen from Eqg10)—(42), (29), (30), and(33), the  of a in which g is close to unity. This means that even if
quantitiesdy, 8,, and & do not depend on the nucleation initially there was no drop iV, it is highly probable that one
ratel, or the diffusion coefficienD. Remarkably(and use- could appear in it during. The formation of one drop con-
fully), they depend only on parametdrsand «. Figure 2  sumes enough vapor to prevent the formation of another in
shows the dependence éfon « for different values ofl’.  this volume. In contrast the influence of the growing drop
Figure 3 illustrates the dependencies of the quantifigs  within V can be neglected outside ®f (in the regime of
o, . applicability of our approach Therefore, since, on the aver-

12

0,=
2
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FIG. 5. The dependencies of ratidy /N on «. Solid line corresponds to

FIG. 4. The dependencies of quantiyon a. Solid line corresponds to I'=50, dotted line td’=75, and dashed line t=100.
I'=50, dotted lines td'=75, and dashed lines 16=100.

1/ 15\2% 1
< tormed i 8 volLIR . 0=3| 7aT| QT (50
age, only one drop is formed in a volurie a good estimate 4\ mal I5°D
of N thlclebnumber of drops formed per unit volume of vapor| o+ s compare the estimates E¢8), (49), and (31), and
gas will be (50) under the conditions of applicability of Eq&8) and
N=V-t 47) (31). Form the ratios
L N T
On the temporal side, the average tim® the formation of O _31( ) , (51)
the neighboring drop provides an estimate of the duration of N 23
the nucleation stage since, when this time has elapsed, the 4 7\ 15
vapor will have been sufficiently depleted to preclude any t_OE an (52)
further nucleation. It should be indicated that the theory of 't I'?y®

Ref. 8 substantially strengthens the rigor of the present. . . .
analysis since it maintains material balance between the va't:—'rSt’ note that bOth. ratios d(_apend on ne|ther_ the nucleation
. . ratel, nor the diffusion coefficienD. These ratios are plot-
por and the growing drop and provides a more accurate de[-ed in Figs. 5 and 6. They show remarkable agreertith
scription of the time dependent supersaturation in the neig > o) k?et.ween thé resallts of both approachgs
borhS;ﬂgoLt(;l?ZC;;oghe finds that This agreement is unexpected. The approximation of
o uniformity with a> « violates the principal assumption of
A \~1 277 3/5 the theory of the present paper, namely that each drop con-
N=(—?3) 50_3][ (48) sumes vapor molecules in its immediate neighborhood.
3 5Da” However, a formal explanation can be advanced for the ob-

served agreement. In the framework of the approach involv-

VIIl. COMPARISON WITH THE RESULTS BASED ing the assumption of uniformity, the nucleation stage ends
ON THE APPROXIMATION OF UNIFORM VAPOR when the relative decease of supersaturation is of about 1/
DENSITY On this basis, it can be shown that the present theory predicts

, ) an average decrease of supersaturation in the volmier-
Homogeneous nucleation of drops in a vapor-gas me-

dium following the instantaneous establishment of supersatu-
ration was studied earliér® In these studies it was assumed

that the vapor density remained uniform throughout the 7 '
nucleation stage. In these studies, some variation of the chief; 1
characteristics of nucleation occurred because of the use o
different criteria for the duration of the nucleation stage, so
that this variation was no fundamentally significant. Based
on the assumption of vapor uniformity, the following results

were obtained folN, the total number of drops formed per o4
unit volume of the system and fdg the duration of the
nucleation stagéthe present notation is useth the diffu-

Q.8

0.6

0.2

sion regime of drop growth, o
1 15 2/5 I 3/5
o==—= 0 (49) FIG. 6. The dependencies of ratig/t on «. Solid line corresponds to
4\ 7al’ D) ’ I'=50, dotted line td"=75, and dashed line t6=100.
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dicted by the theory based on uniformity. Thus one can as-
sume that the theory based on uniformity is applicable under
the same conditions as that developed in the present paper. J

ing the timet that is approximately the same as that pre- _ (= o (r1p)2
rEf drrf(r)=J drrP(r)4wr2f dtl(r,t)
0 0 0

ocrdP(r)=me(r)dr. (B2)
0 0
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APPENDIX A: GOVERNING EQUATION H(I’)E—f dtf 1lzdr'47ﬂ"2Io
FOR THE PROBABILITY P(r,t) 0 pt
/

Let us formulate and solve the differential equation for 2BtY2 (= u?| ¥? 2
the probabilityP(r,t). Assume that the time incremedt is xexg —T ST N dr| 1- 2 e " . (B3
infinitely small, so that the average number of drops

dp=dt ' dr’4mr'2(r' t) (A1) In Eqg. (B3), in place ofr’, introduce a new variable of

)

R(t integration x defined byr’=gtY?x=2DY?at¥?x. Taking

B (! / / :
appearing during the timdt within the spherical shell be- nto account that=(r - Bt*312(Dt) 2 we find
tweenR(t) andr will be much less then unity. Thethp can

be regarded as the probability of formation of a new drop in r/8)2 r/8tL2

: L : . 3| (7B B 3122

time dt within the spherical layer. Thus the quantity H(r)=—4mlop . dt ) dx t7x
r

1-dp=1—dt| dr'dmr'2(r' 1) (A2) 2 (=

R(t) xXexpy —TI j dr

. . ) . w12 Ja(x—1)

is the probability that no new drops will be formed in the

layer in timedt. According to the sense of the probability @?(x—1)2 12 .

P(r,t), for P(r,t+dt), we can write Xl &7 } (B4)

T

r
P(r,t+dt)= P(r,t){l—dtf dr’4mr'?1(r',1)].

R(t) In the right-hand side of EqB4), we introduce new variable

(A3) of integrationz in favor of t by means ot=2z%r?/%. Then
From Eq.(A3), it follows that we obtain
JP(r,t r Sl 1 1/2
( )=—P(r,t)f dr'24mr 2 (r' ). (A4) H(r)=——°r5f dzZ | dx¥
at R(t) ,82 0 1
Solving the differential equatiofA4) with the natural initial 2 2712
) 2 o o (X_l) 2
condition Xexp —I' f drf|l————| e 7.
72 Jax-1) s
P(r,00=1, (A5)

(B5)

In principal, Eg.(B5) already has the structure that is neces-
APPENDIX B: CALCULATION OF THE MEAN Zary for the further calculations b?eause t'he whole eren—
DISTANCE TO THE NEAREST-NEIGHBOR DROP ence orr is expressed py the factor in the rl.g'ht-hand 5|de
of Eqg. (B5). This equation allows an simplification that is
Let us explain the origin of Eq$26) and(27). From Eq.  important for the numerical calculations. The inversion of
(19), with the aid of Eq.(8), according to whichR(t")  the order of integration over andx when
= Bt'Y2 we obtain

dP(r 18)2 1 1/z o0 1/
—()=—P(r)47rr2J(rﬁ) dti(r,t). (B1) fdzf dXHJ dxf dz,
dr 0 0 0 1 0

we come to Eq(17).

Taking into account Eq920), (22), and (B1), let us trans-
form the expression for the mean distance to the nearegnables us to perform the integration ozen explicit form
neighbor dropr as and, then, for Eq(B5), we have
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87T|O *
H(r)=—— r5J dx x 3
58 1

2 0
xXexp —I dr 1
p{ 7% Jax-1) T{

12
e 72]

a?(x—1)

7_2

For convenience of numerical calculations, in Egg), it is
worth transforming variables that eliminatein favor of y.
This is 7= a(x—1)y. After such transformation, using Egs.
(28)—(30) and taking into accoung=2D?x, for H(r) we

have

r 5
H(r)=—(—) :

o

Substituting Eq(B7) instead of the expression in the expo-
nent of the exponential in the right-hand side of E2f), we

come to

Grinin

oot (1)

et al.

(B8)

From Eq.(B8), it follows Eq. (27) in which the numerical

factor is the value of the integral:

f dée ¢°~0.92.
0
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