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A theory of simultaneous nucleation and drop growth in a supersaturated vapor is developed. The
theory makes use of the concept of ‘‘nearest-neighbor’’ drops. The effect of vapor heterogeneity
caused by vapor diffusion to a growing drop, formed previously, is accounted for by considering the
nucleation of the nearest-neighbor drop. The diffusional boundary value problem is solved through
the application of a recent theory that maintains material balance between the vapor and the drop,
even though the drop boundary is a moving one. This is fundamental to the use of the proper time
and space dependent vapor supersaturation in the application of nucleation theory. The conditions
are formulated under which the mean distance to the nearest-neighbor drop and the mean time to its
appearance can be determined reliably. Under these conditions, the mean time provides an estimate
of the duration of the nucleation stage, while the mean distance provides an estimate of the number
of drops formed per unit volume during the nucleation stage. It turns out, surprisingly, that these
estimates agree fairly well with the predictions of the simpler and more standard approach based on
the approximation that the density of the vapor phase remains uniform during the nucleation stage.
Thus, as a practical matter, in many situations, the use of the simpler and less rigorous method is
justified by the predictions of the more rigorous, but more complicated theory. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1819871#

I. INTRODUCTION

Since nucleation rates are extremely sensitive to the de-
gree of supersaturation, it is important, in describing the
stages of homogeneous nucleation in a supersaturated vapor,
to accurately account for vapor depletion by growing drop-
lets. One of the widespread methods for doing this involves
the approximation that the metastable phase remains uniform
in density as the supersaturation decays.1–5 The method uses
a feature characterized by the strong dependence of the
nucleation rate on supersaturation. This is the fact that
completion of the nucleation stage, i.e., a practical cessation
of the nucleation of new drops, occurs at a relatively small
~few percent under characteristic conditions! decrease of the
vapor supersaturation in the system. Therefore, the accumu-
lation of the condensing matter by every growing drop dur-
ing the nucleation stage is determined essentially by the law
of drop growth. The question is how many drops will be in
the system at a given timet?

The approximation of uniformity1–5 assumes that the
nucleation rate att is determined by a vapor density averaged
over the volume of the excess vapor. The latter can be found
by subtraction of the number of molecules within the grow-
ing drops from the initial number of vapor molecules. At this
point a contradiction arises. The calculations of the charac-

teristics of the nucleation stage, e.g., the total number of
nucleating drops, the duration of the stage, etc., explicitly use
the fact of the strong dependence of the nucleation rate on
supersaturation, while at the same time the calculations ne-
glect the continual nonuniformity of the vapor due to the
growing drops. A volume averaged rate of nucleation is thus
replaced by the nucleation rate at the volume averaged den-
sity of the excess vapor. Evidently, such a replacement could
become a source of error with a strong~nonlinear! depen-
dence of nucleation rate on supersaturation.

An alternate account of the vapor nonuniformity was
presented in Ref. 6. The corresponding commentaries can be
found in Ref. 7 where another approach to description of the
nucleation stage, one that recognizes the vapor nonunifor-
mity in the neighborhood of growing drop, is adopted. The
explicit realization and the range of validity of this approach
depends essentially on the regime of drop growth, e.g., on a
free molecular or diffusion regime. In Ref. 7 it is assumed
that the drops grow in the free-molecular regime during the
whole stage of nucleation. This limitation is very restrictive
and considerably narrows the range of validity of the theory
in Ref. 7.

This paper broadens the approach in Ref. 7 so that it
covers a wide enough class of conditions to include the case
under which drops grow in the diffusion regime during the
nucleation stage.

The central object under consideration is a drop that ap-
a!Author to whom correspondence should be addressed. Electronic mail:
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pears to be nearest to a given initially nucleated one. Thus
we will call this broadened approach to the description of the
nucleation stage the ‘‘approximation of the nearest-neighbor
drop.’’

Formulation of the conditions under which the theory is
capable of sufficiently accurate predictions for the average
distance to a nearest-neighbor drop and for the average time
to its appearance, will be an important part of the study in
this paper. Under these conditions, the average time to the
appearance of a nearest-neighbor drop provides an estimate
of the duration of the nucleation stage, and the average dis-
tance to such a drop allows us to estimate the total number of
drops per unit volume that will have been nucleated during
the nucleation stage.

Rigor of description of the nucleation of a nearest-
neighbor drop is also achieved by the use of a new accurate
nonsteady solution for the vapor concentration profile around
the growing drop.8

Comparison of predictions for the above mentioned
theory of the nucleation stage obtained within this proposed
approach with those obtained via the approximation of uni-
formity reveals good agreement. This agreement is rather
surprising because it exists under conditions valid for the
approximation of a nearest-neighbor drop. Under such con-
ditions, every growing drop consumes the excess vapor, the
majority of which was initially concentrated in the sphere
around the growing drop, a sphere whose radius is equal to
the average distance to a nearest-neighbor drop.

II. VAPOR CONCENTRATION IN THE NEIGHBORHOOD
OF A DROPLET

Consider a vapor-gas medium that becomes supersatu-
rated instantaneously, so that drops growing irreversibly be-
gin to nucleate within the medium. Imagine the following
experiment. Choose the drop, which appeared first, and study
the probability of the nucleation of a new drop in the neigh-
borhood of the first one. The time of formation of the first
drop will serve as the zero of time. Denote the radius of the
chosen drop byR(t) and the mean free path of vapor mol-
ecules byl. At the time of nucleation of the first drop, its
radius evidently satisfies the inequalityR(0),l. This rela-
tion will hold for other drops nucleated at other times. Under
some conditions it is possible that the nucleation stage will
terminate while the conditionR(t),l is still valid.7 In this
paper we consider the other situation, in which the inequality
R(t)@l holds during the most of the nucleation stage, and
the transport of vapor molecules to the drop occurs by means
of diffusion. This assumes that the density of the inert gas in
the system is large enough. In order to concentrate on the
principal ideas of the proposed approach, the effects of the
release of the latent heat of condensation, Stephan’s flux,
etc., are not considered. Under the restrictions on the region
of applicability of the presented approach that will be formu-
lated below, the initial pressure of the excess vapor must be
of the order of 1 atm. Since the nucleation stage finishes as
soon as the drops formed during it will condense even a
small part~several percents! of the excess vapor, at the pres-
sure of inert gas of 10 atm, we can disregard, with confi-
dence, the effects of release of condensation heat. The free

path l of the vapor molecules that corresponds to such a
pressure of the inert gas is of the order of 1026 cm. At the
typical value of the diffusion coefficient 1021 cm2 s21, in a
range of 1 – 1010cm23 s21 of the nucleation rate, the radii of
the drops will reach values of 1023– 1025 cm by the end of
the nucleation stage. Therefore, the conditionR(t)@l is ful-
filled during the major part of the nucleation stage.

We will study the probability of nucleation of a new
drop, growing in the supersaturated vapor, and nearest to the
one formed initially. Note that, in spite a relative smallness
of the growing drop formed initially, the nonuniformity it
creates in the supersaturated vapor quickly propagates via
diffusion. Until the nucleation of the nearest drop, the distri-
bution of vapor in the neighborhood of the growing drop can
be assumed to be spherically symmetric. That distribution is
described by the concentrationn(r ,t) of the vapor molecules
in the vapor-gas medium in the vicinity of the growing drop.
Here r, with (r .R), is the distance from the center of the
first drop. The vapor concentrationn(r ,t) satisfies the conti-
nuity equation into which Fick’s law has been substituted,
namely,

]n~r ,t !

]t
5

D

r

]2

]r 2
@rn~r ,t !#, ~1!

whereD is the diffusion coefficient. Equation~1! is subject
to the initial condition

n~r ,0!5n0 , ~2!

wheren0 is the initial uniform vapor concentration. Equation
~1! must also satisfy the boundary condition

n~R,t !5n` , ~3!

wheren` is the equilibrium vapor concentration at the sur-
face of the drop atr 5R(t). The solution of Eq.~1! must take
account of the movement of the drop surface, i.e., of the time
dependence ofR, i.e., of the fact that with the radiusR(t) of
initially formed droplet changing with time. Since the den-
sity of a liquid drop is much greater than that of the vapor,
the rate of change ofR will be small compared to the rate of
establishment ofn(r ,t). The time dependence ofR(t) is
determined by equating the number of molecules reaching
the drop via diffusion to the number of absorbed by the drop.
This balance is expressed by the relation

dR

dt
5v,D

]n~r ,t !

]r U
r 5R

, ~4!

wherev, is the volume per molecule in the drop. Equations
~1!–~4! constitute the boundary value problem that must be
solved forn(r ,t). Unfortunately, Eq.~4! renders the problem
nonlinear so that, at the moment, only an approximate solu-
tion is available.

This approximation can be accurate if the parameter

a[@v,~n02n`!/2#1/2 ~5!

is small,8 a condition that holds far below the critical tem-
perature.

In Ref. 8 it was shown that the solution of Eqs.~1!–~4!
could be approximated to the first order ina by
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n~r ,t !5n02
2bt1/2~n02n`!

p1/2r
E

u

`S 12
u2

t2D 1/2

3exp~2t2!dt, ~6!

where

u5
r 2R~ t !

2~Dt !1/2
~7!

with

R~ t !5bt1/2, ~8!

an approximation forR(t), also valid to the first order ina,
and where

b[@2Dv,~n02n`!#1/252D1/2a. ~9!

Equation ~8! is a relation that has been derived by other
approximate methods. However, the method in Ref. 8 main-
tains material balance~molecules lost from the vapor equal
the number appearing in the drop! to the first order ina,
whereas previous methods do not.

III. NUCLEATION IN THE NEIGHBORHOOD
OF A GROWING DROP

We introduce a measure of vapor supersaturationz(r ,t)
and of relative decrease of supersaturationw(r ,t) in the
neighborhood of the growing drop. These are

z~r ,t !5
n~r ,t !2n`

n`
~10!

and

w~r ,t ![
z02z~r ,t !

z0
5

n02n~r ,t !

n02n`
, ~11!

wherez0 is initial supersaturation of the vapor. Substitution
of Eq. ~6! into Eq. ~11! gives

w~r ,t !5
2

p1/2

bt1/2

r E
u

`

dtS 12
u2

t2D 1/2

exp~2t2!. ~12!

We restrict the situation to the case of homogeneous nucle-
ation in a vapor-gas medium, assuming the presence of for-
eign particles to be negligible. The nucleation rate, the num-
ber of drops formed per unit volume in the vapor-gas
medium, per unit time, in the neighborhood of the initial
drop, will be denoted byI (r ,t). The nucleation rate in the
initial uniform vapor-gas medium with vapor concentration
n0 will be denoted byI 0 . This will be one of the important
parameters of the theory.

Following Ref. 4, we adopt the simplified expression

I ~r ,t !5I 0e2Gw~r ,t !. ~13!

Here,G is a dimensionless parameter characterizing the de-
pendence of the free energy of the critical drop on the vapor
supersaturation at its initial valuez0 . In the capillary ap-
proximation this parameter is given by the expression

G5
4pv,

2

3 H 2s

kBT ln@n0 /n`#J
3 n02n`

n0
. ~14!

HerekB is the Boltzmann constant ands is the liquid-vapor
surface tension,G is approximately equal to the number of
molecules in the critical drop and is a large parameter of the
theory.

As is shown in Ref. 4, Eq.~13! has a high relative accu-
racy atw(r ,t)&1/G. Whenw(r ,t)51/G, the nucleation rate
I (r ,t) is e times less thenI 0 . As w(r ,t) increases, exceeding
the value 1/G, with a decrease of the distance to the growing
drop, the accuracy of Eq.~13! decreases, but the nucleation
rateI (r ,t) also becomes small. Therefore, atw.1/G, the use
of Eq. ~13! does not reduce the accuracy of further calcula-
tions based on this expression.

The quantitiesa, I (0), G are interconnected by thermo-
dynamics, but in our investigation it will be convenient to
consider them as independent parameters.

IV. VARIOUS NEAREST NEIGHBOR RELATIONS

According to the definition of the nucleation rate, the
quantity

dp5dtE
R

r

dr84pr 82I ~r 8,t ! ~15!

is the average number of new droplets formed, in the infini-
tesimal time intervaldt, in a spherical layer betweenR andr
surrounding the initial drop. Standard probability theory,
based on the smallness ofdp allowsdp to be regarded as the
probability of formation of a single new drop in timedt in
this spherical layer.

Thus the quantity 12dp is the probability that, in time
dt, no new drop will form in the layer. Sincedp!1, it fol-
lows that

12dp>exp~2dp!. ~16!

The probability that, in a finite timet after the appearance of
the initial drop, no new drop will appear in the layer, is equal
to the product of elementary probabilities, Eq.~16!. Let us
denote this probability asP(r ,t). Since the product of expo-
nentials in Eq.~16! is equal to the exponential of the sum of
exponents of the exponentials multiplied, then for the prob-
ability P(r ,t), we have

P~r ,t !5expF2E
0

t

dt8E
R~ t8!

r

dr84pr 82I ~r 8,t8!G . ~17!

The more rigorous derivation of Eq.~17! is given in Appen-
dix A. As time increases

P~r ,t !→P~r !, ~18!

where P(r ) is the probability that no new drops will ever
appear in the layer. From Eqs.~17! and ~18! it follows that

P~r !5expF2E
0

~r /b!2

dt8E
R~ t8!

r

dr84pr 82I ~r 8,t8!G . ~19!

The finite upper limit, rather thaǹ, appears in the integral
in the exponent in Eq.~19! in order to exclude the nonphysi-
cal caseR(t8).r . Eq. ~19! indicates that the probability
P(r ) decreases with an increase ofr. This is physically rea-
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sonable, since as the volume of the spherical layer is in-
creased, the greater is the probability that a new drop will be
nucleated in it.

We now introduce the probability densityf (r ,t) for the
formation of a new drop, nearest to the initial drop, in time
dt and in a spherical shell of thicknessdr. Then the product
f (r ,t)dr dt is the probability of formation of the nearest
drop in timedt in the spherical shell of radiusr and thick-
nessdr. Sincedt anddr are infinitesimal, standard probabil-
ity theory shows thatI (r ,t)4pr 2dr dt is also equal to the
average number of drops forming in timedt in the spherical
shell. Is the probability of formation of a single new drop in
time dt within this spherical shell.

There are two related quantities associated with the idea
of the nearest drop that merit discussion. These are~1! f (r ,t)
related to the probability that the nearest-neighborforms in
the shelldr in time dt, and~2! c(r ,t) the probability density
that the nearest drop will befound in dr at time t. A discus-
sion of these quantities is as follows:

~1! The formation of the nearest drop in timedt in a
spherical layerdr implies that, during timet no other drop
has formed within the sphere of radiusr and that, further-
more, in order for the drop formed indr duringdt to remain
the nearest one, no other drop must form within the sphere of
radiusr after the timet1dt. The first condition is realized
with the probabilityP(r ,t). It follows from Eqs.~17! and
~19! that the second condition is realized with the probability
p(r ,t)5P(r )/P(r ,t). Perhaps it is a bit simpler to see this
by recognizing thatp(r ,t) is the probability~conditionalon
the fact that no drop has formed in the sphere at timet! that
no new drop forms in the sphere of radiusr after timet, so
that P(r )5P(r ,t)p(r ,t) which is only a rearranged form of
the prior equation. Thus, the fact that the probability density
f (r ,t) refers to a drop that remains a nearest one over all
time is guaranteed by the use of the quantityP(r ), which is
the probability that there areneverany drops in the volume
lying ‘‘below’’ the spherical shell 4pr 2dr. Thus, for the
probability densityf (r ,t) we have

f ~r ,t !54pr 2P~r !I ~r ,t ! @r .R~ t !#. ~20!

By using Eq.~19!, it is easy to show that the normalization
requirement forf (r ,t), namely,

E
0

`

dtE
R~ t !

`

dr f ~r ,t !51 ~21!

is satisfied.
Integrating the probability densityf (r ,t) with respect to

t from 0 to (r /b)2 @in accordance with Eq.~9!# or over r
from bt1/2 to `, one obtains, respectively, the probability
densityf (r ) for the formation of the nearest drop at the point
r and the probability densityf (t) for the formation of the
nearest drop at anyr at time t. Thus

f ~r !5E
0

~r /b!2

f ~r ,t !dt, ~22!

f ~ t !5E
R~ t !

`

f ~r ,t !dr. ~23!

As expected, Eqs.~22! and~23! assure the necessary normal-
ization conditions.

~2! The probability densityc(r ,t) that the nearest drop
will be found at the distancer at time t is clearly

c~r ,t !54pr 2P~r ,t !E
0

t

I ~r ,t8!dt8 @r .R~ t !#. ~24!

By using Eq.~17!, it is easy to show thatc(r ,t) is normal-
ized, i.e.,

E
0

`

dtE
R~ t !

`

dr c~r ,t !51. ~25!

V. DETAILED STATISTICAL-KINETIC RELATIONS
CHARACTERIZING THE FORMATION OF THE NEW
DROP

It is of primary interest to calculate the mean distancer̄
to the nearest drop and the mean timet̄ to the formation of
the nearest drop. Using the general definition of the mean
distance contained in Eqs.~22!, ~20!, ~19!, ~13!, and~12! we
obtain

r̄[E
0

`

r f ~r !dr

5E
0

`

dr expH 2E
0

~r /b!2

dtE
bt1/2

r

dr84pr 82I 0

3expF2G
2bt1/2

p1/2r 8
E

u

`

dtS 12
u2

t2D 1/2

exp~2t2!G J ,

~26!

where

u5
r 82bt1/2

2~Dt !1/2
.

The derivation of Eq.~26! is presented in Appendix B. We
also show herein how the Eq.~26! can be reduced to the
form

r̄ 50.92r 0 , ~27!

where the characteristic length scaler 0 is given by

r 05F 5Da2

2pI 0h G1/5

. ~28!

The parameterh in Eq. ~28! is defined as

h5E
1

`

dx x23 exp@2F~x!#, ~29!

where

F~x!5
2

p1/2

Ga~x21!

x E
1

`

dy~12y22!1/2

3exp$2@ay~x21!#2%. ~30!

The mean timet̄ to the formation of the nearest drop can be
calculated in a manner similar to that used for the mean
distancer̄ . The final expression fort̄ is
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t̄50.9t0

x

a2h
. ~31!

The numerical factor 0.9 in Eq.~31! is the value of the ex-
pression

5E
0

`

dv v6 exp~2v5!'0.9.

The characteristic time scalet0 and parameterx are given by
the following expressions:

t05
r 0

2

4D
, ~32!

x5E
1

`

dx x25 exp@2F~x!#. ~33!

Remarkably and conveniently, in accordance with Eqs.~29!,
~30!, and~33!, the parametersh andx depend on neither the
nucleation rateI 0 nor the diffusion coefficientD. Numerical
values ofh and x needed for following numerical analysis
were calculated for the representative values of the param-
etersG, a and are presented in the Table I.

Using c(r ,t) specified by Eq.~24!, the mean distancer̄
at time t to the nearest drop can be found as

r̄ ~ t ![E
bt1/2

`

rc~r ,t !dr. ~34!

Using Eqs.~24!, ~17!, ~12!, and~13!, r̄ (t) is calculated by the
same way as the mean distancer. In order to write the final
expression compactly, it is convenient to introduce a length
scaler0 and a time scalet0 with the help of expressions

r05F Da2

2pI 0
G1/5

, ~35!

t05
r0

2

4Da2
. ~36!

Denote byr̄(t) the dimensionless mean distancer̄ (t)/r0 as
a function of dimensionless timet5t/t0 . For r̄(t) we find

r̄~t!5t1/21E
t1/2

`

dr

3expH 2r5E
0

t1/2/r
dz z4E

1

1/z

dx x2 exp@2F~x!#J .

~37!

This expression is more complicated than Eqs.~27!–~30!.
However, calculations with Eq.~37! are still possible with
the help of usual mathematical programs such asMAPLE. As
we show below, Fig. 1 shows plots ofr̄(t) as a function of
t at typical values of the parameterG and at representative
values ofa. The plots demonstrate an expected behavior of
r̄(t). At small t, the nearest drop can be nucleated far from
the first drop, since it is not likely that a nearer prior drop
will be formed in a large volume surrounding the first drop.
Interdependence of the drops is absent. All the curves coin-
cide. At larget the dimensionless mean distancer̄(t) attains
its minimum valuer̄5 r̄ /r0 since the opposite physical situ-
ation will prevail. This value is different for different curves.
However, the limiting value ofr̄ depends rather weakly on
the parametersa andG.

VI. THE LIMITS OF APPLICABILITY OF THE THEORY

The results that have been presented are entirely reason-
able if the drops formed outside the sphere of the radiusr
during the time interval 0,t< t̄, do not, in essence, influ-
ence the vapor concentration within the sphere. This condi-
tion will obviously be satisfied if the first drop is not able to

FIG. 1. The dependence ofr̄(t) on t. Curves 1, 2, and 3 correspond to
G5100, and a50.03, 0.05, and 0.10. Curve 4 corresponds toG550,
a50.05.

TABLE I. The values ofh andx by representative values of the parametersG, a. The values in the cells should
be multiplied by the factor indicated in the second row.

G a 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10

50 h 3 1023 0.58 0.78 1.23 1.74 2.29 2.89 3.52 4.88 6.36
x 3 1026 1.42 2.02 3.73 6.25 9.71 14.2 19.9 35.3 56.7

75 h 3 1023 0.30 0.45 0.79 1.19 1.63 2.11 2.63 3.76 5.00
x 3 1026 0.34 0.57 1.30 2.50 4.29 6.76 10.0 19.3 32.7

100 h 3 1023 0.20 0.32 0.60 0.93 1.31 1.73 2.19 3.19 4.30
x 3 1026 0.12 0.25 0.67 1.42 2.59 4.27 6.55 13.2 23.2
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significantly influence the state of the vapor outside the
sphere duringt̄. We can offer two measures of the achieve-
ment this situation. One is the ratiodD of diffusion length
2ADt̄ to the distancer̄

dD5
2ADt̄

r̄
. ~38!

The other is the ratiodv of the decrease of the number of
vapor molecules within the sphere of radiusr̄ at time t̄ to the
number of molecules constituting the first drop at timet̄.
Thus

dv5

3v,E
R~ r̄!

r̄
dr r 2@n02n~r , t̄ !#

R3~ t̄ !
, ~39!

and from Eqs.~27!, ~31!, and~38! we have fordD

dD5
1

a S x

h D 1/2

. ~40!

For the analysis of Eq.~39! it is convenient to introduce the
ratio

j5
r̄

R~ t̄ !
50.97S h

x D 1/2

, ~41!

where Eq.~9! has also been taken into account. The quantity
j is itself of special interest. Introducing the solution Eq.~6!
into Eq. ~39!, and using Eqs.~9!, ~27!, ~31!, and ~41! we
obtain

dv5
12

p1/2
a3E

1

j

dx~x21!E
1

`

dy~12y22!1/2

3exp$2@ay~x21!#2%. ~42!

As can be seen from Eqs.~40!–~42!, ~29!, ~30!, and~33!, the
quantitiesdD , dv , and j do not depend on the nucleation
rate I 0 or the diffusion coefficientD. Remarkably~and use-
fully !, they depend only on parametersG and a. Figure 2
shows the dependence ofj on a for different values ofG.
Figure 3 illustrates the dependencies of the quantitiesdD ,
dv .

As can be seen from Fig. 3 the conditions needed for
applicability of our approach,

dD&1 ~43!

or

dv'1 ~44!

are both satisfied ifa is greater than somea0 , that depends
on G. This a0 does not depend onI 0 and decreases with an
increase ofG. As seen from Fig. 3, as a good value fora0

with G550, we can takea050.1, and with G575 and
G5100, good values ofa0 should be, respectively, 0.05 and
0.03.

VII. ESTIMATES FOR THE TOTAL NUMBER OF
DROPS AND THE DURATION OF THE NUCLEATION
STAGE

It is useful to introduce a quantityq given by

q5
4p

3
r̄ 3I 0t̄. ~45!

From the definition of the nucleation rate, if drop growth did
not deplete the vapor,q, would represent the average number
of drops that would be formed in the volumeV̄ of a sphere of
the radiusr̄ during the timet̄. Using Eqs.~27! and ~31! we
find

q>0.57
x

h2
. ~46!

As can be seen from Eqs.~29! and ~33!, q, very usefully,
does not depend on the nucleation rateI 0 nor on the diffusion
coefficientD. In Fig. 4 plots showing the dependence ofq on
a are presented.

It is apparent from Fig. 4, that there exists a wide range
of a in which q is close to unity. This means that even if
initially there was no drop inV̄, it is highly probable that one
could appear in it duringt̄. The formation of one drop con-
sumes enough vapor to prevent the formation of another in
this volume. In contrast the influence of the growing drop
within V̄ can be neglected outside ofV̄ ~in the regime of
applicability of our approach!. Therefore, since, on the aver-

FIG. 2. The dependence ofj on a. Curves 1–3 correspond toG550, 75, and
100, respectively.

FIG. 3. The dependencies of parametersdD anddv on a. Solid lines corre-
spond toG550, dotted lines toG575, and dashed lines toG5100.
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age, only one drop is formed in a volumeV̄, a good estimate
of N the number of drops formed per unit volume of vapor
gas will be

N5V̄2t. ~47!

On the temporal side, the average timet̄ to the formation of
the neighboring drop provides an estimate of the duration of
the nucleation stage since, when this time has elapsed, the
vapor will have been sufficiently depleted to preclude any
further nucleation. It should be indicated that the theory of
Ref. 8 substantially strengthens the rigor of the present
analysis since it maintains material balance between the va-
por and the growing drop and provides a more accurate de-
scription of the time dependent supersaturation in the neigh-
borhood of the drop.

Using Eq.~27!, one finds that

N5S 4p

3
r̄ 3D 21

[0.31F2pI 0h

5Da2 G 3/5

. ~48!

VIII. COMPARISON WITH THE RESULTS BASED
ON THE APPROXIMATION OF UNIFORM VAPOR
DENSITY

Homogeneous nucleation of drops in a vapor-gas me-
dium following the instantaneous establishment of supersatu-
ration was studied earlier.1–5 In these studies it was assumed
that the vapor density remained uniform throughout the
nucleation stage. In these studies, some variation of the chief
characteristics of nucleation occurred because of the use of
different criteria for the duration of the nucleation stage, so
that this variation was no fundamentally significant. Based
on the assumption of vapor uniformity, the following results
were obtained forN0 the total number of drops formed per
unit volume of the system and fort0 the duration of the
nucleation stage~the present notation is used! in the diffu-
sion regime of drop growth,9

N05
1

4 S 15

paG D 2/5S I 0

D D 3/5

, ~49!

t05
1

4 S 15

paG D 2/5 1

I 0
2/5D3/5

. ~50!

Let us compare the estimates Eqs.~48!, ~49!, and ~31!, and
~50! under the conditions of applicability of Eqs.~48! and
~31!. Form the ratios

N0

N
>1.31S a4

G2h3D 1/5

, ~51!

t0

t̄
>2.3S a4h7

G2x5D 1/5

. ~52!

First, note that both ratios depend on neither the nucleation
rate I 0 nor the diffusion coefficientD. These ratios are plot-
ted in Figs. 5 and 6. They show remarkable agreement~with
a.a0) between the results of both approaches.

This agreement is unexpected. The approximation of
uniformity with a.a0 violates the principal assumption of
the theory of the present paper, namely that each drop con-
sumes vapor molecules in its immediate neighborhood.
However, a formal explanation can be advanced for the ob-
served agreement. In the framework of the approach involv-
ing the assumption of uniformity, the nucleation stage ends
when the relative decease of supersaturation is of about 1/G.
On this basis, it can be shown that the present theory predicts
an average decrease of supersaturation in the volumeV̄ dur-

FIG. 4. The dependencies of quantityq on a. Solid line corresponds to
G550, dotted lines toG575, and dashed lines toG5100.

FIG. 5. The dependencies of ratioN0 /N on a. Solid line corresponds to
G550, dotted line toG575, and dashed line toG5100.

FIG. 6. The dependencies of ratiot0 /t on a. Solid line corresponds to
G550, dotted line toG575, and dashed line toG5100.
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ing the time t̄ that is approximately the same as that pre-
dicted by the theory based on uniformity. Thus one can as-
sume that the theory based on uniformity is applicable under
the same conditions as that developed in the present paper.
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APPENDIX A: GOVERNING EQUATION
FOR THE PROBABILITY P„r ,t …

Let us formulate and solve the differential equation for
the probabilityP(r ,t). Assume that the time incrementdt is
infinitely small, so that the average number of drops

dp5dtE
R~ t !

r

dr84pr 82I ~r 8,t !, ~A1!

appearing during the timedt within the spherical shell be-
tweenR(t) andr will be much less then unity. Thendp can
be regarded as the probability of formation of a new drop in
time dt within the spherical layer. Thus the quantity

12dp512dtE
R~ t !

r

dr84pr 82I ~r 8,t ! ~A2!

is the probability that no new drops will be formed in the
layer in timedt. According to the sense of the probability
P(r ,t), for P(r ,t1dt), we can write

P~r ,t1dt!5P~r ,t !F12dtE
R~ t !

r

dr84pr 82I ~r 8,t !G .
~A3!

From Eq.~A3!, it follows that

]P~r ,t !

]t
52P~r ,t !E

R~ t !

r

dr824pr 82I ~r 8,t !. ~A4!

Solving the differential equation~A4! with the natural initial
condition

P~r ,0!51, ~A5!

we come to Eq.~17!.

APPENDIX B: CALCULATION OF THE MEAN
DISTANCE TO THE NEAREST-NEIGHBOR DROP

Let us explain the origin of Eqs.~26! and~27!. From Eq.
~19!, with the aid of Eq.~8!, according to whichR(t8)
5bt81/2, we obtain

dP~r !

dr
52P~r !4pr 2E

0

~r /b!2

dtI~r ,t !. ~B1!

Taking into account Eqs.~20!, ~22!, and ~B1!, let us trans-
form the expression for the mean distance to the nearest
neighbor dropr̄ as

r̄[E
0

`

dr r f ~r !5E
0

`

dr rP~r !4pr 2E
0

~r /b!2

dt I~r ,t !

52E
0

`

r dP~r !5E
0

`

P~r !dr. ~B2!

Substituting the expression for the functionP(r ) from Eq.
~19! to the right-hand side of Eq.~B2! and taking into con-
sideration Eqs.~8!, ~12!, and~13!, we come to Eq.~26!.

To obtain Eq.~27!, consider the exponent of the expo-
nential in the integral in the right-hand side of Eq.~26!.
Denote this exponent as

H~r ![2E
0

~r /b!2

dtE
bt1/2

r

dr84pr 82I 0

3expF2G
2bt1/2

p1/2r 8
E

u

`

dtS 12
u2

t2D 1/2

e2t2G . ~B3!

In Eq. ~B3!, in place of r 8, introduce a new variable of
integration x defined by r 85bt1/2x52D1/2at1/2x. Taking
into account thatu5(r 82bt1/2)/2(Dt)1/2, we find

H~r !524pI 0b3E
0

~r /b!2

dtE
1

r /bt1/2

dx t3/2x2

3expH 2G
2

p1/2x
E

a~x21!

`

dt

3F12
a2~x21!2

t2 G 1/2

e2t2J . ~B4!

In the right-hand side of Eq.~B4!, we introduce new variable
of integrationz in favor of t by means oft5z2r 2/b2. Then
we obtain

H~r!52
8pI0

b2
r5E

0

1

dzz4E
1

1/2

dx x2

3expH2G
2

p1/2x
E

a~x21!

`

dtF12
a2~x21!2

t2 G 1/2

e2t2J .

~B5!

In principal, Eq.~B5! already has the structure that is neces-
sary for the further calculations because the whole depen-
dence onr is expressed by the factorr 5 in the right-hand side
of Eq. ~B5!. This equation allows an simplification that is
important for the numerical calculations. The inversion of
the order of integration overz andx when

E
0

1

dzE
0

1/z

dx→E
1

`

dxE
0

1/x

dz,

enables us to perform the integration overz in explicit form
and, then, for Eq.~B5!, we have
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H~r !52
8pI 0

5b2
r 5E

1

`

dx x23

3expH 2G
2

p1/2x
E

a~x21!

`

dtF1

2
a2~x21!2

t2 G 1/2

e2t2J . ~B6!

For convenience of numerical calculations, in Eq.~B6!, it is
worth transforming variables that eliminatet in favor of y.
This is t5a(x21)y. After such transformation, using Eqs.
~28!–~30! and taking into accountb52D1/2a, for H(r ) we
have

H~r !52S r

r 0
D 5

. ~B7!

Substituting Eq.~B7! instead of the expression in the expo-
nent of the exponential in the right-hand side of Eq.~26!, we
come to

r̄ 5E
0

`

dr expF2S r

r 0
D 5G . ~B8!

From Eq.~B8!, it follows Eq. ~27! in which the numerical
factor is the value of the integral:

E
0

`

dje2j5
'0.92. ~B9!
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